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• PM2.5 exposures of rural Lao women
cooking with wood are within the
global range.

• Ensemble modeling and machine learn-
ing can improve personal exposure esti-
mation.

• Kitchen exposure factor poorly pre-
dicted exposures for traditional stove
users.
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This study presents a machine-learning-enhanced method of modeling PM2.5 personal exposures in a data-
scarce, rural, solid fuel use context. Data collected during a cookstove (Africa Clean Energy (ACE)-1 solar-
battery-powered stove) intervention program in rural Lao PDR are presented and leveraged to explore advanced
techniques for predicting personal exposures to particulate matter with aerodynamic diameter smaller than 2.5
μm (PM2.5). Mean 48-h PM2.5 exposure concentrations for female cooks were measured for the pre- and post-
intervention periods (the “Before” and “After” periods, respectively) as 123 μg/m3 and 81 μg/m3. Mean 48-h
PM2.5 kitchen air pollution (“KAP”) concentrations were measured at 462 μg/m3 Before and 124 μg/m3 After. Ap-
plication of machine learning and ensemble modeling demonstrated cross-validated personal exposure predic-
tions that were modest at the individual level but reasonably strong at the group level, with the best models
producing an observed vs. predicted r2 between 0.26 and 0.31 (r2 = 0.49 when using a smaller, un-imputed
dataset) andmean Before estimates of 119–120 μg/m3 and After estimates of 86–88 μg/m3. This offered improve-
ment over one typical method of predicting exposure – using a kitchen exposure factor (the ratio of exposure to
KAP)—which demonstrated an r2 ~ 0.03 and poorly estimated group average values. The results of these analyses
highlight areas of methodological improvement for future exposure assessments of household air pollution and
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provide evidence for researchers to explore the advantages of further incorporating machine learning methods
into similar research across wider geographic and cultural contexts.

© 2019 Elsevier B.V. All rights reserved.
2 The ACE-1 comeswith a small solar panel to recharge the internal battery of the stove.
1. Introduction

Approximately 2.8 billion people meet most of their cooking
needs with solid fuels such as wood or coal (Bonjour et al., 2013),
creating much human exposure to household air pollution
(“HAP”) from particulate matter (PM) with aerodynamic diameter
of 2.5 μm or smaller (PM2.5). HAP exposures can vary due to hetero-
geneity of pollution within the home, including vertical stratifica-
tion (Johnson et al., 2011; Kandpal et al., 1995) and changes in
dilution relative to distance from the stove or windows. Additional
factors influencing exposure include the amount of time spent out-
side of the household, PM2.5 sources unaccounted for in measure-
ments, pollution at a neighbor's home during a visit, or high
outdoor ambient pollution concentrations due to traffic, trash
burning, or other sources.

Personal exposures that directly affect health are, thus, more than
a function of fuel type alone, and even the most sophisticated indoor
concentration models are often incapable of assessing the human-
environment interactions (Steinle et al., 2013) that affect actual ex-
posures. Errors in exposure estimation caused by relying on proxies
like fuel type may lead to significant bias in the estimation of related
health burdens, especially at points along the exposure-response re-
lationship where risk is thought to be highly non-linear, i.e. be
changing rapidly with exposure (Burnett et al., 2014; Cohen et al.,
2017; Smith et al., 2014; World Bank and Institute for Health
Metrics and Evaluation, 2016). The general paucity of HAP exposure
data stems from the difficulty, invasiveness, and resource-intensive
nature of current exposure measurement techniques (Balakrishnan
et al., 2011, 2014b; Clark et al., 2013). Gold standard methods for
measuring exposure have required outfitting individuals with deli-
cate, expensive pumps that are sometimes also bulky, heavy, and
noisy and require sophisticated laboratory backup. Alternate ap-
proaches that rely on somewhat easier to collect data suggest that
variability in both indoor concentrations and personal exposures to
HAP may be explained in part by household and behavioral indica-
tors like fuel type, stove type, kitchen structure, and cooking dura-
tion (Balakrishnan et al., 2002, 2013).

We investigate the utility of kitchen air pollution and other envi-
ronmental measurements and easier-to-assess household and
survey-based behavioral indicators to predict 48-h average PM2.5 ex-
posures in rural Lao women, utilizing machine learning, and specifi-
cally "super learning" – the production of a single “super” learner by
combining a set of candidate learners like random forests or neural
networks, as weighted by their predictive utility (van der Laan
et al., 2007). We focus specifically on survey questions similar to or
drawn directly from the Demographic and Health Survey (DHS)
questionnaires. DHS is an internationally administered, structured,
and standardized survey designed to collect accurate and represen-
tative data on demographics and health (ICF International, 2011)
that is deployed in over 90 countries. Better use of existing DHS indi-
cators to predict HAP exposures may prove useful for future disease
burden research, quantifications of the amount of illness avoided
through interventions (e.g. Averted Disability Adjusted Life Years,
or aDALYs) (Anenberg et al., 2017; Smith et al., 2015), and, in gen-
eral, cookstovemonitoring and evaluation programs. Finally, we pro-
vide additional data from a Southeast Asian stove intervention
program, adding to a growing global pool of PM2.5 exposure and
kitchen-level concentration data and providing measured concen-
trations that may augment existing global databases (Shupler et al.,
2018a).
2. Methods

Data collection occurred during a separate biomass stove interven-
tion program in Xonboury District, Savannakhet Province, Lao People's
Democratic Republic (Lao PDR), where approximately 95% of house-
holds cook with solid fuels on traditional appliances (Health Effects
Institute, 2018). The program has been described elsewhere (Hill
et al., 2015). Briefly, it sought to evaluate the displacement of traditional
stoves with the African Clean Energy (ACE)-1 battery-powered2 blower
stove in three villages, hereafter identified as villages A, B, and C, in no
particular order. During the program, a total of 72 households (24
from each village) were enrolled. Selection criteria included the use of
wood as the primary cooking fuel and that the main cook be 18 years
of age or older and not pregnant. All primary cookswere identified as fe-
male. Households were encouraged to use their new stove during the
post-intervention study period, but no penalty was imposed if they
did not comply.

The studypopulation described in this paper is a subset derived from
the above population receiving the ACE-1 intervention. Participants
from half of the households in each village (n = 36) were enrolled in
a personal exposure assessment on a convenience basis. Meteorology
and ambient PM2.5 concentrations, measured in the separate study
(Hill et al., 2015) were utilized in the analysis of data in this study.

The sampling scheme took the form of a before-and-after interven-
tion study. Each household participated in a baseline survey, a round
of air pollution monitoring and follow-up surveys approximately
2–4 weeks prior to receiving the ACE-1 stove (“Before”). Subsequently,
each household participated in another round of air pollution monitor-
ing and follow-up surveys weeks after receiving the ACE-1 stove
(“After”). The time between stove dissemination and measurement
was intended to allow cooks to gain familiarity with the new stove. Dis-
semination occurred over the course of a week in January 2015. Distrib-
utors made follow-up visits to villages and households to address
problems and queries.

Each round of air pollution sampling occurred in segments of ap-
proximately 3-weeks, with about one week in each village. The first
round spanned December 2014 to January 2015 and the second round
occurred between January and February 2015. In this paper,we describe
the following measurements: 2 days of simultaneous gravimetric mea-
surement of KAP and personal PM2.5 exposure; a post-monitoring sur-
vey to provide data specific to each 2-day set of measurements; and
ambient air pollution and meteorology measurements at a central site
in each village. This detailed sampling scheme is summarized in Fig. 1.

Protocols used to collect the data analyzed in the study were ap-
proved by the University of California, Berkeley Committee for Protec-
tion of Human Subjects, protocol number 2014-06-6457. Lao Institute
for Renewable Energy (LIRE) formally sought permission for the study
through Ministry of Energy and Mines – IREP – who informed the pro-
vincial and district authorities. District authorities supported the
implementation.
2.1. Air pollution measurements

Gravimetric air pollution measurements of KAP and personal PM2.5

exposures were taken before and after stove dissemination. Sampling
was performed using Triplex cyclones (SCC 1.062, Mesa Labs, Butler,
NJ, USA) with a 2.5 μm size cut at 1.5 l per minute attached to AirChek



Fig. 1. Key aspects of the sampling scheme.
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XR5000 pumps (SKC, Inc., Eighty Four, PA, USA). Cyclones were fit with
37 mm Polytetrafluoroethylene (PTFE) filters with support ring and 2
μm pores (Pall Corporation, Port Washington, NY, USA). Gravimetric
KAP and personal PM2.5 exposure samples were collected for two con-
secutive approximately 24-h periods (about 48 h total).

KAP monitors were placed on the kitchen wall about 1.5 m from the
floor and about 1m from the edge of themain cooking stove.Where pos-
sible, monitors were placed about 1 m away from major ventilation
sources such as windows, eaves, and doors. Field teams installed push-
pins during the Before sampling period to facilitate consistency in moni-
tor placement with the After period. Duplicate KAP filter measurements
were taken for quality assurance and quality control (noriginal = 16).3

Measurements of personal exposure and gravimetric KAP concen-
trations were taken concurrently. A vest was designed to hold personal
exposure monitoring equipment with the gravimetric sampling inlet
approximately in the breathing zone while limiting discomfort
(Fig. 2). Participants were requested to place the garment next to their
sleeping area (e.g. bed) at night and in a nearby location while bathing.

Sample run timeswere determined primarily by start and stop times
logged byfieldworkers. Discrepancieswere assessed and resolvedman-
ually using context, like the internal timers on the pumps. Flow rates
were measured at the start and end of each gravimetric sample using
standard methods. Paper based forms were double-entered and dis-
crepancies were resolved manually.

Ambient 24-h PM2.5 measurements were collected using a MiniVol
PM2.5 Sampler (Air Metrics, Springfield, OR, USA). 47 mm PTFE filters
with built-in support ring and 2 μm pores (Pall Corporation, Port
Washington, NY, USA) were used for sampling at a flow rate of approx-
imately 5 l perminute. TheMiniVol was placed in a relatively central lo-
cation in each village where it would be safe and would not be
disturbed. Placement rotated through villages with KAP and exposure
sampling.

Measurements of outdoor temperature (°C), relative humidity (%),
barometric pressure (mb), wind speed (km/h), wind direction, and pre-
cipitation (mm) were collected using a Vantage Vue 6250 wireless
weather station with Integrated Sensor Suite 6357 and a 6351 console
(Davis Instruments, Hayward, CA, USA) co-located with the MiniVol in
each village. Meteorology readings were manually entered into a field
form once in mid-morning (“morning”) and in the late morning or
early afternoon (“afternoon”).

2.2. Determination of mass concentrations

Filters from KAP and personal monitoring were weighed before and
after sampling on a Mettler Toledo XP2U (Mettler Toledo, Columbus,
3 2 of the 16 samples intended as duplicateswere analyzed as actual area samples to re-
place invalid area samples.
OH, USA). Field blanks were collected for both 37 mm (nBefore = 15,
nAfter = 12) and 47 mm systems (nBefore = 3, nAfter = 2). During the
study, an equipment malfunction in the weighing facility invalidated
pre-sample filter weight measurements for a large fraction of the
37mm samples (about 20%). Samples were recovered using a validated
method (Garland et al., 2018). Briefly, post-sample filters were soni-
cated in a solvent bath to extract PM mass from sampling. Filters were
air dried, conditioned, and reweighed. The post-extraction mass was
used as a proxy for the filter's pre-sample weight. Final mass deposition
from sampling was calculated as the difference between the post-
sample (pre-extraction) filter mass and post-extraction filter mass,
and adjusted using the average post-extraction field blank mass from
each sampling period. The method has been shown to recover pre-
sample filter weights with high reliability (r2 N 0.99). For consistency,
all gravimetric samples were treated with this method. The method
discussed by Garland et al. (2018) identifies and excludes samples
below a limit of detection of 60 μg of mass deposition – we employed
data produced by an earlier version of their model that did not exclude
values below the LoD (b5% of non-blank filters and about 12% of all
filters)4 but which still demonstrated high reliability (r2 N 0.99). Filters
from ambient PM measurement were not affected by this equipment
malfunction and thus not treated for extraction.

2.3. Questionnaires

Three separate questionnaires were administered during the personal
exposure study: a baseline questionnaire, a post-KAP monitoring ques-
tionnaire (not used in this analysis), and a post-personal exposure moni-
toring questionnaire (Hill et al., 2015). All questionnaires were drafted in
English and translated into Lao with input from colleagues with experi-
ence in the field, rural Lao context, or both. All were administered in Lao
by trained surveyors familiar with local customs using Microsoft Excel-
based tools and portable computers. Questionnaires were reviewed for
missing and implausible answers and manually adjusted to available
audio recordings of survey administration where possible.5

The post-monitoring questionnaireswere administered upon equip-
ment removal. The post-KAP monitoring questionnaire asked specifi-
cally about the approximately 4 days of KAP measurement (which
included about 48 h of gravimetric measurement), and the post-
personal exposure monitoring questionnaire asked only about the ap-
proximately 48 h of simultaneous gravimetric exposure and KAP
measurement.

All post-personal exposure monitoring questions were included be-
cause they pertain directly to the air pollution measurement periods of
interest. Redundant questions were removed. Topics considered from
4 Mass deposition assessed to be b60 μg after application of the extraction method.
5 In some instances of review, especially at later dates, recordings were not available.



Fig. 2. An example of the sampling garments used.
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the baseline questionnaire included household characteristics and de-
mographics, architectural characteristics of the primary house and
kitchen, respondent age and smoking status, attitudes toward cooking
smoke and its impacts on health, wood fuel preparation, electricity ac-
cess, and electric appliance use. Baseline questionnaire variables were
combined for each household's Before and After post-monitoring
datasets.

A primary goal of the analysis was to understand the utility of DHS-
type survey questions in the prediction of personal PM2.5 exposure con-
centrations in thewood-fuel cooking context. In Lao PDR, DHS questions
have been administered in the form of the Lao Social Indicator Survey
(LSIS) (Ministry of Health and Lao Statistics Bureau of the Ministry of
Planning and Investment, 2012). LSIS questions for which reasonable
overlap with the baseline or post-monitoring questionnaires existed
or could be produced during data processing covered topics including
household size by age, education level of household members, drinking
water source, sanitation, ethnic identity, architectural characteristics of
themain house, primary fuel type and cooking location, household asset
and financial status, and land and livestock ownership.6

Several existing variables were modified and new variables created
by combining individual responses or questions. Cooking and grilling
exposure activity scores were created from post-monitoring question-
naire responses about cooking and grilling behavior. This is described
in more detail in the Supplement.

2.4. Statistical analysis

Analyses were performed primarily using the R statistical program-
ming language (R Core Team, 2016). Data were analyzed using two
methods: one using a user-specified library of algorithms (SuperLearner;
Polley et al., 2016) and one using so-called “bagging” of regression trees
(randomForest; Liaw andWiener, 2002). SuperLearner implementations
used a library containing the following learners: random forest, cForest,
extreme gradient boosting, neural networks with a single hidden layer,
support vector machines, and 10-fold cross-validated (CV) generalized
linear modeling with regularization.7 Though both are flexible methods
6 LSIS questionsHL6, HH11, ED3, ED4,WS1,WS8,WS9, HC1C, HC3, HC4, HC5, HC6, HC7,
HC8, HC9, HC10, HC12, HC14, and HC15.

7 Learners as identified by SuperLearner: SL.randomForest, SL.cforest, SL.xgboost, SL.
nnet, SL.svm, SL.glmnet. All were used with default settings.
for prediction, SuperLearner has the advantage on more parsimonious
fits if the underlying true model is relatively smooth. In addition, as long
as the library of learners is extensive enough, the SuperLearner provides
something akin to an upper bound on how any approach would do
given the available data, so a lowCV-based r2 resulting fromSuperLearner
is unlikely to be from model misspecification and more likely to be be-
cause of the limitations of the predictors.

The general goals of the analysis were to understand howwell 48-h
average exposures and 24-h average exposures could be predicted
using all variables collected, only a targeted subset of the variables col-
lected (for several targeted subsets), and the traditional kitchen expo-
sure factor (KEF; the ratio of a person's exposure to their KAP
concentration) as well as which categories of information lead to rela-
tively better performance when included in a predictive model. Special
emphasiswas placed on data similar to those collected routinely around
the globe as part of the DHS program.

Most, but not all, households contributed two sets of data to the
models (Before and Aftermeasurements); values from the same house-
hold were kept together (by fold) during cross-validation. Because not
all households contributed to both the Before and After datasets (i.e.
not all Before and After data were paired), performing paired (depen-
dent) statistical tests inmanyof the comparisons in this paperwould re-
quire a sample size reduction which may prove detrimental to the
primary predictive analyses of this paper. For this reason, we often per-
form testing that assumes independencewhen comparing variables be-
tween the Before and After periods. Doing so may increase bias and
affect the likelihood of Type I error – possibly increasing the likelihood
of Type I error in t-tests (e.g. Guo and Yuan, 2017). For this reason, re-
ported statistical significances in variables Before vs. After the interven-
tion should be used as general indications of periodic difference and
with caution.Missing personal PM2.5 exposure concentration values de-
termined the final sample size for analysis: 33 After samples and 27 Be-
fore samples from 34 unique participants (60 total samples; 19 in
village A, 22 in village B, and 19 in village C). Variable importance in
the prediction of 48-h exposure was assessed using the randomForest
package (Liaw and Wiener, 2002) (based upon the incremental decre-
ment in fit by removing each candidate predictor). Model performance
was evaluated using the coefficient of determination (r2) of observed
exposure values regressed on predicted exposure values and by com-
paring the similarity of observed and predicted exposure values as strat-
ified by sampling period (Before vs. After). The latter was chosen to
reflect real-world use in the context ofmonitoring and evaluating an ex-
posure intervention program.

The kitchen exposure factor is sometimes used along with KAP
concentration data to quantify personal PM2.5 exposure. The predic-
tive value of KEF was explored in this dataset using 10-fold CV: a
mean 48-h KEF was calculated on approximately 90% of sample
data and multiplied across individual 48-h KAP concentration mea-
surements on the remaining ~ 10% of data to produce estimates of
exposure for those participants. This was performed ten times with
each iteration leaving out a unique ~ 10% of the data until cross val-
idated exposure predictions were calculated for all participants.
This procedure was performed on all KAP and exposure data and
again on the dataset stratified by sampling period (5 folds per stra-
tum). Before and After samples from the same household were
kept together during CV fold creation.

The ability to predict 48-h average PM2.5 exposure was explored
using 10-fold CV SuperLearner methods on three primary variable
sets. The first training set, the “Full” set, included all original and im-
puted (described in the Supplement) independent variables with the
exception of village, as it is largely non-transportable, and sampling pe-
riod, as it is a direct aspect of the pre-determined model performance
metric. We can use such an approach to examine the ability of
predicting based upon future data that is a combination of actual and
imputed measures. Stove type, as a near-perfect proxy for sampling pe-
riod, was also excluded. An iteration of this model was also produced
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using the un-imputed dataset.8 The second training set excluded all KAP
and meteorology variables from the Full set (“Full Without KAP” set).
The third set included only KAP, meteorology, and ambient concentra-
tion data from the Full set (“KAP Without Surveys” set).

The Full set was also explored with CV SuperLearner using each of
the first- and second-day 24-h average exposure measurements as the
outcomes of interest. When predicting individual 24-h average out-
comes, gravimetric KAP and meteorology data were subset to reflect
only the specific day of measurement.

A group of five training datasets that focused on LSIS-type question-
naire datawas also exploredwith CV SuperLearner to better understand
the predictive power of DHS indicators and the adjuvant power of other
measurements. These included the following:

• a set of only the LSIS-type questionnaire variables (“LSIS Only”)
• a set of LSIS-type questions, ambient PM2.5 concentrations, and allme-
teorology variables (“LSIS and Outdoor”)

• a set of LSIS-type variables and self-reported wood fuel use (kg) from
the post-monitoring questionnaires (“LSIS and Wood Use”)

• a set of LSIS-type variables and self-reported heating variables from
post-monitoring questionnaires (“LSIS and Heating”)

• a set of LSIS-type variables and the previously described cooking and
grilling exposure activity scores (“LSIS and Exposure Scores”)
PM2.5 concentrations observed during the Before and After periods
were examined, though the overall analysis does not hypothesize or ex-
plore the causal link between ACE-1 use and exposure reduction.
3. Results

3.1. Air pollution and meteorological measurements

Summary statistics for the complete pollution concentration sam-
ples (n=60) are shown in Table 1 and visualized in Fig. 3. The 48-h av-
erage personal PM2.5 exposure concentration in the Before period was
significantly different from that of the After period (reduced from 123
μg/m3 to 81 μg/m3, p b 0.001) as was the 48-h average KAP concentra-
tion (from 462 μg/m3 to 124 μg/m3, p b 0.001). Day 1 average exposures
weremarginally different fromDay 2 averages (p=0.07), with a stron-
ger and significant difference (p b 0.01) in the Before period. In the Be-
fore period, the Day 2 average value was lower than the Day 1 average
value; thiswas reversed in the After period. Average KAP concentrations
were not significantly different between Days 1 and 2. Paired (n = 52)
and mixed paired-unpaired (n = 60) 48-h samples were significantly
different between the Before and After periods for both personal expo-
sure and KAP (p b 0.001). The same was true for KEF (p b 0.01).

Budget constraints and technical difficulties resulted in too few valid
samples to produce daily ambient PM2.5 concentration estimates. Thus,
valid 24-hmeasurements were aggregated to produce a single estimate
of average ambient PM2.5 concentration for each village during each
sampling period (Table 2). Each sample was assigned an ambient con-
centration based on the village in which the participant lived and the
sampling period. A significant difference in average ambient concentra-
tions between sampling periods was not observed (p=0.74). Temper-
ature andwind speed varied significantly (p b 0.05) between Before and
After periods; barometric pressure varied marginally significantly (p b

0.10) between periods (Table 3).
8 The un-imputed “Full” dataset consisted of only 37 samples (nBefore = 13, nAfter = 24)
and 278 covariates, compared to the 60 samples (nBefore = 27, nAfter = 33) and 305 covar-
iates included in the post-imputation dataset. Differences in covariates arose from the
changes to data processing outputs caused by datamissingness. In general, the types of co-
variates included in the un-imputed and post-imputation datasetswere similar. A descrip-
tion of the imputed and final datasets are in the Supplement to this article.
3.2. Questionnaires

A total of 246 variables from the baseline and post-monitoring
questionnaires were available for analysis (not including variables
for household ID and village). Missing values were imputed, and an
indicator variable was created for each imputation. A more complete
description of the questionnaire dataset, imputation techniques, and
construction of the final dataset used for subsequent analysis is in-
cluded in the Supplement. Table 4 summarizes select variables of
the survey-based data.
3.3. Statistical analyses and prediction models

Summary statistics for models produced using all 48-h exposure
datasets are shown in Table 5. Fig. 4 shows observed exposure values
plotted against values predicted using CV SuperLearner for each of the
three primary datasets and against values predicted using the KEF
method.

Among the three primary datasets, the model produced using the
“Full Without KAP” dataset estimated exposures from both Before
and After periods with the least reliability. Little difference was ob-
served between the predictive power of the “Full” and “Full Without
Surveys” datasets, which both produced models that accurately pre-
dicted Before and After concentrations. Both models demonstrated
modest strength in predicting individual exposure values, with r2 ~
0.25 and estimated means within a reasonable range of observed
values. The model produced using the Full un-imputed dataset per-
formed similarly well to the model produced on the Full imputed
dataset.

KEF proved a poor predictor of exposure, especially in the Be-
fore sampling period. Stratification by sampling period improved
results slightly, with the best results observed in the After period
predictions. 48-h exposures were also modeled from 48-h average
KAP concentrations with SuperLearner9 as a complementary anal-
ysis of what a KEF-type model would look like with the benefits of
super learning and machine learning. This improved performance
slightly (r2 = 0.09), producing mean Before and After exposure es-
timates of 108.0 μg/m3 (p = 0.18) and 86.4 μg/m3 (p = 0.30),
respectively.

The model produced on LSIS-only data did not successfully predict
mean concentrations for either study period. Addition of ambient
PM2.5 and meteorology data dramatically improved the LSIS dataset's
predictive power, resulting in the most predictive LSIS-based model.
The addition of heating variables, wood use variables, and exposure
score variables also improved performance slightly.

Variable importance analyses uncovered useful data groupings
(Table 6). Relative importance is demonstrated in terms of the per-
cent increase in mean squared error (MSE) caused by removing
each variable during Random Forest selection. Meteorology and
KAP data made the greatest contributions to the Full data model.
The sets of 10 most important variables were very similar between
the Full and Full Without Surveys models. The model produced on
the Full set without meteorology or KAP data was less robust, and
produced relatively poor estimates of sample period mean expo-
sures. Generally, LSIS-type variables related to household size, eth-
nicity, and cooking location made the greatest contributions to LSIS
model performance. Among all models, a select few variables pro-
duced a considerably larger impact than the others. For example, rel-
ative importance in the Full dataset drops considerably after Day 1
24-h KAP concentration, the fourth most important variable.
9 Excluding learners reliant on forests and regularization (i.e. SL.randomForest, SL.
cforest, and SL.glmnet), which did not function with only one predictor variable.



Table 1
Kitchen air pollution and personal PM2.5 exposure concentrations, by period and sample day.

Kitchen air pollution concentration Personal PM2.5 exposure concentration KEF

nc Mean (μg/m3) +/− 95% CI b GM GSD Mean (μg/m3) +/− 95% CI b GM GSD Mean SD

Before 27
Day 1 499 a 182 376 2.1 139 a 28 124 1.6 0.45 a 0.43
Day 2 470 a 163 350 2.1 107 a 19 98 1.5 0.39 a 0.36

48-h Avg. 462 a 144 370 2.0 123 a 22 113 1.5 0.42 a 0.42
After 33

Day 1 131 a 30 113 1.7 78 12 71 1.6 0.70 0.32
Day 2 116 15 109 1.5 83 14 69 2.2 0.80 a 0.50

48-h Avg. 124 a 20 114 1.5 81 11 75 1.5 0.72 0.29

Note: GM= Geometric Mean, GSD = Geometric Standard Deviation, KEF = Kitchen Exposure Factor.
a Values comprising this arithmetic mean are distributed log-normally (p b 0.05).
b For non-transformed data.
c Note the difference in Before and After sample sizes. Some data did not have both Before and After samples (i.e. were unpaired).
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Observed Day 1 and Day 2 24-h average exposure values plotted
against the values predicted using CV SuperLearner on the Full dataset
are shown in Fig. 5. Models created with either Day 1 or Day 2
Fig. 3.Kernel density plots of distributions of personal PM2.5 exposure (left) and Kitchen PM2.5 A
red fill with solid-line) and sampling time (from top to bottom). Concentrations are limited to
from the Day 1 KAP, and 5 points from the Day 2 KAP plots were excluded.
measurements accurately predicted sample period means (p N 0.15).
The model trained on Day 1 measurements produced a stronger fit (r2

= 0.30) than the model trained on Day 2 measurements (r2 = 0.07)
ir Pollution concentrations (KAP; right), by sampling period (blue fill with dashed-line and
600 μg/m3 to allow easier interpretation; 6 points from the 48-h Combined KAP, 6 points



Table 2
Summary statistics for outdoor ambient PM2.5 concentrations, by sampling period and
villagea.

n Mean (μg/m3) Max (μg/m3) Min (μg/m3) SD (μg/m3)

Before 7 52 73 26 16
Village A 2 49 50 47 –
Village B 3 57 66 43 12
Village C 2 49 73 26 –

After 14 53 147 15 34
Village A 4 57 82 15 30
Village B 5 70 147 38 44
Village C 5 34 57 20 15

The difference between Before and After concentrationswas not statistically significant (p
= 0.74).

a Data collected Before and After the intervention cannot be claimed as independent.
Because the data as analyzed included a mix of paired and un-paired data, independent
sample testing methods were applied. This may increase bias and the likelihood of Type
I error (Guo and Yuan, 2017).
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or any of themodels produced using 48-h average exposures as the out-
come of interest (highest 48-h average r2= 0.27) and un-imputed data.

4. Discussion

This work provides one of the first exposure estimates among rural
Lao females cooking with solid fuel and adds to the small number of
studies on HAP in the region (e.g. Huang et al., 2013; Mengersen et al.,
2011; Morawska et al., 2011). The personal PM2.5 exposure measure-
ments were within the range of those experienced by cooks using
solid fuels globally. One study (Shupler et al., 2018b) estimated KAP
and female exposure concentrations for rural Lao homes cooking with
wood at 380 μg/m3 and 155 μg/m3, respectively during the “wet (sum-
mer)” season, and at 517 μg/m3 and 211 μg/m3 respectively during the
“dry (winter)” season. A recent review of the literature (Balakrishnan
et al., 2014b) estimated the mean of 24-h average exposures for
women cooking with solid fuels around the world at 267 μg/m3 (SD:
297 μg/m3). The lower estimates of exposures experienced by the Lao
females in our study may be due to the hybrid indoor-outdoor nature
of cooking in the region. Dwellings and kitchens in Lao homes were ob-
served to be highly ventilated; rooms often have large eaves, windows,
and walls that do not reach the roof (Fig. 6).

4.1. Concentrations observed before and after the ACE-1 intervention

KAP concentrations and personal exposures were higher during the
Before (pre-ACE-1 dissemination) than during the After (post-ACE-1
dissemination) periods (p b 0.001). The magnitude of this difference
as depicted in Table 1 should be treated with caution, as the testing
methods used may introduce bias and affect Type I error, as discussed
Table 3
Summary statistics for key meteorology data, by sampling period and villagea.

Mean barometric pressure
(mb)b

Mean temperature
(°C)c

Mean RH
(%)

Before 1017.1 24.3 56
Village A 1018.7 23.3 53
Village B 1017.3 23.3 54
Village C 1015.2 26.3 61

After 1015.9 25.9 54
Village A 1015.4 27.8 53
Village B 1015.0 24.5 57
Village C 1017.3 25.3 51

Note: with the exception of “Mean afternoon precipitation,” “mean” values are taken as the av
a Data collected Before and After the intervention cannot be claimed as “independent.” Becau

testing methods were applied. This may increase bias and the likelihood of Type I error (Guo a
b Difference between Before and After concentrations marginally significant using un-paired
c Difference between Before and After concentrations statistically significant using un-paired
d Difference between Before and After values not tested for significance.
in the Methods section. This is also true of the below-discussed tests
for significance between the Before and After periods.

Factors other than the ACE-1 intervention may have impacted the
magnitude of observed exposure reductions. Meteorological parame-
ters changed between the Before and After periods (Table 3). Mean
temperature was lower during the Before period (p b 0.05) while
mean wind speed was greater (p b 0.05). Such changes may decrease
physical comfort and encourage heatingwith biomass, increasing expo-
sures among participants. In fact, use of heating during sampling was
significantly higher (p b 0.01) during the Before period than during
the After period. The effect may amplify the observed decrease in expo-
sures. Future work should explore study designs that allow for delinea-
tion of the exposure effects of seasonality. Meteorological as well as
behavioral and cultural factors should be considered – e.g. harvest pe-
riods, seasonal biomass burning, changes in ingredients and cooking
types, religious holidays, and celebrations with pyrotechnic or major
cooking components.

The amount of self-reported fuel used and time spent in the kitchen
dropped significantly between the Before and After periods (p b 0.01
and p b 0.05, respectively). Time spent cooking at home and grilling at
home also fell significantly (p b 0.01 and p b 0.05, respectively). These
reductionsmay have been due to possible improvements in cooking ef-
ficiency afforded by the new stove.

It should be noted that follow-up time and time between the inter-
vention and After measurements (approximately 2–4 weeks) was rela-
tively short. A longer or more intensive stove transition period may
have improved usage rates and efficiency, while a longer period of
follow-up may have incurred increases in hardware failure or declines
in usage.

4.2. Predicting PM2.5 exposures with traditional and new methods

A primary aim of this paper is to explore the utility of advanced sta-
tistical techniques in predicting the difficult-to-measure personal PM2.5

exposure concentrationswithin the rural solid-fuel cooking context. Ex-
posure datawere collected only on femaleswith self-reported ages of or
above the age of 18 years, and so may not be generalizable to males or
children. Models using machine learning and super learning produced
reliable estimates of mean exposures in both the Before and After
study periods. The best models calculated individual 48-h PM2.5 expo-
sures with reasonable strength (r2: 0.26–0.31 [and 0.49 for amodel per-
formed on the smaller un-imputed set]), and predicted period-specific
mean exposure values that were within 10% of and not significantly dif-
ferent from measured values.

Direct cross-validated prediction modeling for HAP exposures is
sparse in the literature. One recent study (Shupler et al., 2018b) used
Bayesian hierarchical methods, leave-one-out model validation, and
variables like fuel and stove type, season, and location from 44 studies
Mean wind speed
(km/h)c

Most-observed wind
directiond

Mean afternoon precipitation
(mm)

6.1 SW 0.3
8.5 SE 0.0
6.5 NW 0.8
3.2 SW 0.0

3.9 NW 0.2
4.2 SE 0.0
3.2 NW 0.7
4.3 NW 0.0

erage among all morning and afternoon measurements.
se the data as analyzed included a mix of paired and un-paired data, independent sample
nd Yuan, 2017).
student's t-test (p b 0.10).
student's t-test (p b 0.05).



Table 4
Summary of selected questionnaire responses.

All study data Dataset as analyzeda

Mean (SD or %) Mean (SD or %)

Before After Before After p-valuec

n 36 36 27 33 –
Age of Cook (years; reported during Baseline Questionnaire) 35 (11) 34 (11) 35 (11) 0.95
Female Head of Household 4 (11%) 4 (15%) 4 (12%) 1.00
Self Reported Spending (KIP/month) 316,000 (710,000) 201,000 (343,000) 314,000 (745,000) 0.44
Electricity Access 36 (100%) 27 (100%) 33 (100%) –
Primary Biomass Stove is ACE 1 0 36 (100%) b 0 33 (100%)b b0.01⁎

Primary Biomass Stove is Open Fire 30 (83%) 0 b 24 (89%) 0 b b0.01⁎

Reported Wood Use for Cooking (kg) 10.5 (5.1) 2.4 (1.2) 10.2 (4.5) 2.4 (1.3) b0.01⁎

Kitchen Size (m3) 40 (33) 41 (32) 42 (34) 0.91
Cooking Location at Home

In House (Separate Room) 1 (3%) 0 1 (4%) 0 0.44
In House (Elsewhere) 30 (83%) 33 (92%) 22 (81%) 30 (91%)
In Separate Building 5 (14%) 3 (8%) 4 (15%) 3 (9%)

Time Spent Cooking per Day at Home (minutes) 543 (211) 364 (146) 542 (223) 368 (147) b0.01⁎

Total Cooking Exposure Score 6896 (3441) 4356 (3498) 7423 (3643) 4353 (3516) b0.01⁎

Time Spent Grilling per Day at Home (minutes) 86 (113) 29 (59) 87 (123) 31 (61) 0.04⁎

Total Grilling Exposure Score 3744 (6537) 1414 (5375) 4284 (7315) 1542 (5603) 0.12
Smoking Occurred in House 28 (78%) 27 (75%) 23 (85%) 25 (76%) 0.52
Smoking Occurred in Kitchen 5 (14%) 3 (8%) 4 (15%) 3 (9%) 0.69
Ever Used a Heat Source During Sampling 23 (64%) 10 (28%) 20 (74%) 9 (27%) b0.01⁎

Time Activity During 48-h Sampling (hours)
Kitchen 8.9 (3.3) 7.4 (3.2) 9.3 (3.5) 7.5 (3.2) 0.04⁎

Inside Home, but Not in Kitchen 21.6 (5.2) 27.7 (5.2) 22.4 (5.4) 27.8 (5.4) b0.01⁎

Inside, at a Job 0.1 (0.5) 0 0.1 (0.6) 0 0.33
Inside, Elsewhere 2.4 (3.1) 1.1 (2.0) 2.0 (3.1) 0.9 (1.4) 0.08
Outdoors, at a Job Site 6.6 (5.2) 6.2 (6.8) 6.5 (5.2) 6.7 (6.8) 0.88
Outdoors, Elsewhere 8.4 (4.3) 5.6 (5.7) 7.7 (4.1) 5.1 (5.3) 0.04⁎

a Twelve samples were dropped prior to analysis for a lack of outcome data as described in the supplement. Tests for significant differences between Before and After responses were
performed only for the dataset as analyzed.

b Field notes indicate that at least one participant's ACE-1 stove was non-operational during one of the two days of After period sampling.
c Data collected Before and After the intervention cannot be claimed as “independent.” Because the data as analyzed included a mix of paired and un-paired data, independent sample

testing methods were applied. This may increase bias and the likelihood of Type I error (Guo and Yuan, 2017); reported statistical significance should be used as a general indicator and
with caution.
⁎ Significant difference; see note “c”.
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across 13 countries to predict household concentration and, using an in-
dicator variable for Female Exposure, to also predict PM2.5 exposures in
women in 106 countries (best model Bayesian r2 = 0.57). The sample
size and geographic and cultural diversity covered by the dataset used
in Shupler et al. (2018b) go far beyond those of the data analyzed in
our paper. Still, our model produced values (120.1 μg/m3 for the Full
model) considerably closer in magnitude to the measured mean 48-h
average personal exposure concentration (123.2 μg/m3) in rural Lao
women using wood cookfuels on non-improved cookstoves than
those estimated (as annual average 24-h concentrations) by the Bayes-
ian techniques of Shupler et al. (2018b; 183 μg/m3). The Bayesianmodel
heavily over-predicted annual 24-h average exposure concentrations of
Table 5
48-h model results - observed vs. predicted.

Before sampling period After sampling period

Observed 123.2 54.5 80.8 30.5

Model CV r2 Mean SD p-valuea Mean SD p-valuea

Full 0.26 120.1 17.9 0.76 88.1 16.4 0.15
Full, Un-imputed Dataset 0.49 117.6 10.8 0.46 86.8 15.3 0.19
Full without KAP 0.01 105.5 11.6 0.12 91.7 6.9 0.07
Full Without Surveys 0.27 119.0 23.4 0.68 87.1 22.7 0.21
KEF Only 0.03 240.8 206.1 0.02 67.4 58.2 0.00
KEF Only - Stratified 0.02 199.5 170.5 0.04 89.0 40.3 0.28
LSIS Only 0.00 97.5 6.0 0.02 97.7 6.5 0.01
LSIS and Outdoor 0.31 119.7 26.0 0.72 85.8 16.4 0.30
LSIS and Wood Use 0.05 102.7 14.5 0.06 91.9 9.1 0.06
LSIS and Heating 0.04 108.1 17.7 0.16 91.7 10.7 0.09
LSIS and Exposure Scores 0.01 103.6 8.8 0.08 98.2 10.9 0.00

a Against observed.
Lao women using an improved biomass cookstove (ICS, e.g. the ACE-1)
at 449 μg/m3 in relation to the mean of our measured 48-h average
values (80.8 μg/m3). Our Full model produced estimates much closer
at 88.1 μg/m3.

Our analysis holds an advantage over that of Shupler et al. (2018b),
as it employs data from the specific rural Lao population of interest.
However, given the small relative sample size of our analysis and the di-
versity of the covariate set employed by Shupler et al. (2018b), the
relative strength of accuracy observed in our models is likely assisted
by factors other than population specificity. We believe our model ben-
efits substantially from the ability of machine learning techniques like
Random Forest to uncover and harness complex variable inter-
relationships to producemore accurate predictions. Future work should
explore this notion more directly by comparing the results of machine
learning techniques to the types of Bayesian analysis employed by
Shupler et al. (2018b) using the same underlying datasets.

A more recent study (Yuchi et al., 2019) predicted indoor PM2.5 con-
centrations using 10-fold cross validation of models produced with
multiple linear regression, random forests regression, and a blend of
the two during an air cleaner randomized controlled trial in Ulaanbaa-
tar, Mongolia – a city heavily impacted by solid fuel use (Hill et al.,
2017). Individual models predicted indoor concentrations, each with
an r2 around 0.50, similar to the prediction efforts in India. However,
the use of a blended model produced an r2 of 0.815, demonstrating
that ensemble methods that include machine learning techniques may
produce dramatic improvement in indoor concentration prediction
models.

The best models in our analysis calculated 48-h PM2.5 exposures
with correlations (r2) between 0.26 and 0.31 (r2 = 0.49 using an un-
imputed dataset). In many contexts, these correlations may be



Fig. 4. Observed 48-h average exposures plotted against predicted values for the three primary models and the KEF with stratification model. Individual concentrations are depicted by
smaller points, and mean concentrations, by larger points. All data are stratified by sampling period. The coefficient of determination (r2) for the regression of observed values on
predicted values is shown in the top left corner of each panel. X and Y axes were limited to 350 μg/m3 to improve interpretability of the figures; these bounds were exceeded by 4
predicted values (max X = 861.3 μg/m3) in the KEF Only – Stratified panel.
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considered modest and are smaller than those produced by Shupler
et al. (2018b) and Yuchi et al. (2019). In the context of predicting
population-level exposures, however, they are of reasonable magni-
tude. For example, a cross-validatedmodel derived frommeasurements
of a small number of household-level, DHS-type variables in 617 house-
holds from 24 villages in India (Balakrishnan et al., 2013) demonstrated
an r2 of 0.31, and was ultimately employed in the GBD 2010 to estimate
global HAP concentrations.

With cross validation, the machine learning and super learning
methods applied to larger covariate sets strongly outperformed the
more conventional method of linear KEF-based exposure assessment.
KEF-based predictions overestimated mean Before exposures by
60–95%, but produced estimates of the After period mean that were
similar to the measured value. Application of super learning and ma-
chine learning did improve the predictive performance of KAP (amath-
ematical variant of KEF when used as the sole predictor), but did not
produce results on par with the best larger datasets. Researchers and
practitioners should approach the predictive use of KEF with caution,
at least in contexts similar to Lao PDR.

Poor generalizability of the bivariate relationship between indoor
area concentration and exposure is supported by work performed else-
where. A study of homes cookingwithwood in Guatemala showed48-h
average PM2.5 exposure estimates for mothers that were typically 70%
lower than 48-h average KAP measurements in homes cooking with
open fires but only 35% lower in homes using chimney stoves
(Northcross et al., 2010). Despite average exposure values that were
lower than average kitchen concentrations, 33% of measured exposure
concentrations were greater than corresponding KAP levels. Women
cooking with solid fuels over traditional open fires in Mexico
(Armendáriz-Arnez et al., 2008) were shown to have mean 24-h aver-
age PM2.5 exposures over 75% lower than mean 48-h average KAP
Table 6
10 most important variables for prediction as estimated for select datasets.

Full dataset Full withou

Variable % MSE
increase

Variable

Morning Wind Speed - Day 1 407 Combined Cooking Exposure S
Morning Wind Speed - Day 2 257 Wood Fuel Use (kg)
Morning %RH - Day 1 187 Home Cooking Exposure Scor
24-h KAP Concentration - Day 1 150 Indoor Heating Type - Nonea

48-h KAP Concentration 73 Ambient PM2.5 Concentration
Combined Cooking Exposure Score 41 Indoor Heating - Yesa

Afternoon Pressure - Day 1 32 Number of Pigs Owned
Afternoon Wind Speed - Day 1 31 Home Cooking Exposure Scor
Morning Wind Direction, Blowing West - Day 2 29 Combined Grilling Exposure S
Afternoon Temp - Day 2 29 Owns Radio

a Perfectly correlated with each other.
concentrations. This relationship changed after the introduction of a
Patsari chimney stove. In women cooking solely with the Patsari, this
difference dropped to about 70%; in women cooking with a Patsari
who also maintained an open fire outside, it dropped to about 55%;
and in women cooking with a Patsari who also maintained an open
fire in the kitchen it dropped to about 40%. A study of cookstove users
in rural China (Baumgartner et al., 2011) demonstrated a significant re-
lationship between individual 24-h kitchen concentrations and expo-
sures in adults, but found no such connection in children and did not
test predictive performance using CV. These regional examples are sup-
ported by a more-global analysis (Shupler et al., 2018b), which calcu-
lated female exposure to kitchen concentration ratios spanning a
range of 0.33–0.74 across Global Burden of Disease regions.

The relative performance of the models examined in this analysis
provides insight into which types of covariates may be of most predic-
tive utility. Models trained on outdoor environmental data and KAP-
related data were most accurate. Variable impact analysis identified
morning wind speed, morning relative humidity, and KAP concentra-
tions as producing the greatest impacts on model error in the Full
Dataset. However, a direct causal link between these variables and ex-
posures should not be automatically assumed. It is possible that these
relationships are due to related, more-direct exposure factors such as
outdoor ambient concentrations, which were only generally assessed
in this analysis and which can be interrelated with HAP concentrations
(Balakrishnan et al., 2014a) and influence concentrations in micro-
environments in which a considerable portion of a person's time is
spent. Future work should more comprehensively assess and incorpo-
rate ambient concentrations into their modeling approaches. Future
modeling efforts should also explore the impacts of these variables on
model strength across global regions of varying climate, housing type,
and general culture.
t KAP LSIS and heating

% MSE
increase

Variable % MSE
increase

core 147 Indoor Heating - Yes 319
52 Ethnicity - Lao 87

e - Morning 48 Any Heating 31
45 Total Household Size 29
34 Number of Household Members aged 5–14 Years 19
34 Ethnicity - Katang 14
28 Kitchen Type - Cooks In House (Elsewhere) 13

e - Afternoon 25 Number of Pigs Owned 8
core 24 Highest Education in Home - Lower Secondary 8

14 Kitchen Type - Cooks In Separate Building 6



Fig. 5. Observed 24-h average exposures plotted against predicted values produced with CV SuperLearner and the Full dataset. Individual concentrations are depicted by smaller points,
andmean concentrations, by larger points. All data are stratified by sampling period. The coefficient of determination (r2) for the regression of observed values on predicted values, the p-
value for a paired student's t-test for significance between observed and predictedBefore values (pB), and the same for After values (pA) are shown in the bottom right corner of each panel.
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Models including questionnaire data, while outperformed by
models that used other information, demonstrated some predictive
power. Of notable utility were heating indicators – heating is likely
an important determinant of personal exposure in regions were
combustion-based heating exists (Baumgartner et al., 2011). The
predictive power shown by questionnaire data in general suggests
that accurate prediction of group mean exposures in the context of
rural solid-fuel cooking might not require lengthy surveys. More-
over, there is reason to believe that certain survey-related queries
would be of use when predicting exposures in populations with
household characteristics and behavior patterns that are more het-
erogeneous than those of the Lao study population. Previous studies
have been able to explain a good deal of statistical variation in 24-h
and 8-h average HAP exposures with data obtainable by question-
naire (Baumgartner et al., 2011; Clark et al., 2010).

LSIS data produced the least well-performing super learningmodels.
Poor performance of the LSIS data model in this specific study popula-
tion may be because the LSIS dataset does not include variables with
much differentiation between seasons or cooking appliance. Globally
administered DHS surveys like LSIS may be improved by adding a
small number of questions about stove type, fuel usage, and heating
Fig. 6. A kitchen with ventilation features typical of those
behaviors. It is also likely that DHS indicators provide more predictive
benefit in regions in which household characteristics, like kitchen and
stove type, are more variable or seasonal effects, like heating, are less
variable. In support of the usefulness of DHS indicators, the GBD 2010
model was able to reliably predict KAP concentrations from DHS-like
data (Balakrishnan et al., 2013).

The single best candidate learner on the Full datasetwas random for-
est, with an average root mean squared error (RMSE) of 40.0 μg/m3,
followed by cForest at 43.2 μg/m3. Generalized linear modeling with
regularization performed about as well as cForest with an RMSE of
44.6 μg/m3. Researchers interested in HAP exposure prediction should
explore decision trees and regressionwith regularization, andmay ben-
efit from the use of a super learner, which, in this analysis, did not im-
prove upon the best individual candidate learner (RMSE: 40.1 μg/m3).
The neural network package, our implementation of which was rela-
tively simplistic, did not outperform most other candidates (RMSE:
48.1 μg/m3). However, future analyses should investigate the utility of
more complex and more nuanced neural networks.

The findings described in this paper provide guidance to future
HAP studies, especially those measuring and modeling changes in
exposure due to an intervention. Based on our experience, we have
found in the area of study (Credit: Philipp Koetting).
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produced a short list of lessons learned and suggestions for future
research:

1. KAP and KEF alone should not be relied upon as unbiased predictors
of exposure without verification.

2. Exposure-related parameters should be dealt with carefully. In some
instances, confounders may be measured and adjusted for or
employed as predictors.

3. Researchers across the globe should include DHS survey questions in
their questionnaires to allow for stronger evaluation of the utility of
DHS data in estimating HAP concentrations and related exposures
across a wider global context.

4. Covariates with high “importance” in HAP exposure prediction
models are not necessarily causal factors for the associated changes
in exposure, and may not be externally generalizable. More studies
in a wider variety of populations are needed.

5. Thedevelopment of a broadly applicable and easy-to-calculate cooking
exposure score should be explored, perhaps for use by the DHS pro-
gram. Our random forests analyses, while specific to our rural Lao
study population, suggest that an exposure score could prove useful
in the prediction of exposures in the wider solid-fuel cooking context.

6. Structured, timely, and repeated quality control measures – like
reviewing participant responses with interviewers and discussing un-
anticipated points of confusion at the end of each sample day or week
– should be used during periods of questionnaire administration.

The prediction methods we used have several strengths. Exposure,
the metric of interest to health investigators, was directly predicted.
The use ofmachine learning enabled exploration of hidden and complex
relationships precluded by common linear and log-linear regression ap-
proaches. Furthermore, ensemblemethods had the potential to improve
predictive power, and were enabled by the exploration of datasets with
dozens to hundreds of covariates, allowing a broad investigation of pre-
dictive power. Despite the inclusion of more covariates than samples,
cross-validation methods limited error from overfitting.

The limitations of thiswork highlight areaswhere further research is
needed. Our sample size of 60 exposure measurements from a single
district in Lao PDR is unlikely to provide the heterogeneity required to
produce valid inferences or models with wide external validity. Addi-
tionally, collection of the large number of survey indicators and mea-
surements described is resource intensive.

Evidence suggests the final gravimetric analysis approach used in this
study is reliable (Garland et al., 2018). It should not be overlooked, how-
ever, that our analysis may have incurred some error or bias from the
gravimetric equipment malfunction and related remedies discussed in
the Methods section. Additional assessments using more traditional
gravimetric analysis techniques may prove useful in confirming the data
and our findings.

The World Health Organization recently undertook a collaborative
process of revising existing survey indicators related to household energy
use (World Health Organization, 2018a, 2018b). This includes an ex-
panded set of questions focusing on both primary and secondary use of
fuels and stoves for cooking, heating, and lighting. It is likely that this
set of more nuanced survey indicators – combined with other traditional
LSIS-style questions –may providemore robust household energy indica-
tors and improve the predictive power and precision of models that rely
upon them.

The impact of participant compliance on predictive power was not
analyzed. Future work should assess compliance, perhaps through the
use of accelerometers onmonitors. This will also help investigators bet-
ter understand how their measured exposures relate to true exposures.
Approaches with smaller, more targeted variable sets – perhaps in-
formed by the initial findings of our analysis or similar future work per-
formed across a wider geographic and cultural domain – may produce
models that are more manageable and less onerous for researchers
and, importantly, participants. Finally, comprehensive longitudinal
measurements of both predictors and exposures were not collected in
each sampling period. Expanded collection and more in-depth analysis
of repeated or long-termmeasurementswould better capture between-
and within-individual variability. This has been shown to considerably
improve the reliability of predictions of HAP-related exposures
(McCracken et al., 2009).
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