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1  |  INTRODUC TION

Globally, nearly 3 billion people burn solid fuels (eg, wood, dung, 
charcoal) in inefficient and poorly vented combustion devices (ie, 
open fires, traditional stoves) to meet daily cooking needs1 and ex-
posure to the resulting household air pollution (HAP) is a leading risk 
factor for global morbidity and mortality.2 There are a relatively lim-
ited number of studies on personal exposures to HAP3,4 given these 
health implications as well as the variety of interventions and con-
texts for which exposure data is needed. The lack of personal expo-
sure data has in turn limited our understanding of health implications 

and the potential benefits of transitioning to cleaner cooking tech-
nologies and fuels. Field studies of personal exposure to PM2.5 (par-
ticulate matter <2.5 microns in aerodynamic diameter) are some 
of the most difficult to conduct, as they require costly equipment, 
highly trained technicians, and participant compliance with moni-
tors. These characteristics make them difficult to execute in low-
income settings, especially as study households are often spread out 
across large areas.

Currently, the available HAP exposure models, such as those used 
for global burden of disease estimates, have relied on simple proxies, 
such as primary fuel type combined with relationships to the kitchen 
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Abstract
This study assessed the performance of modeling approaches to estimate personal 
exposure in Kenyan homes where cooking fuel combustion contributes substantially 
to household air pollution (HAP). We measured emissions (PM2.5, black carbon, CO); 
household air pollution (PM2.5, CO); personal exposure (PM2.5, CO); stove use; and 
behavioral, socioeconomic, and household environmental characteristics (eg, ventila-
tion and kitchen volume). We then applied various modeling approaches: a single-
zone model; indirect exposure models, which combine person-location and area-level 
measurements; and predictive statistical models, including standard linear regression 
and ensemble machine learning approaches based on a set of predictors such as fuel 
type, room volume, and others. The single-zone model was reasonably well-correlated 
with measured kitchen concentrations of PM2.5 (R2 = 0.45) and CO (R2 = 0.45), but 
lacked precision. The best performing regression model used a combination of survey-
based data and physical measurements (R2 = 0.76) and a root mean-squared error of 
85 µg/m3, and the survey-only-based regression model was able to predict PM2.5 
exposures with an R2 of 0.51. Of the machine learning algorithms evaluated, extreme 
gradient boosting performed best, with an R2 of 0.57 and RMSE of 98 µg/m3.
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area concentrations,5,6 and those which have made use of survey data 
have shown varying degrees of predictive power.7–9 Recent efforts 
by Sanchez et al.7 (peri-urban South India) and Hill et al.8 found sur-
vey and machine learning models and survey-based regression mod-
els were able to predict HAP exposure with R2 values of up to 0.25 
and 0.3, respectively. Shupler et al.5 modeled global HAP exposures 
using kitchen exposure ratios and reported R2 values of 0.22. Micro-
environmental models, which weight concentrations based on time 
spent in a given environment, have performed better (eg, Liao et al.10 
[Spearman ρ = 0.83] and Balakrishnan et al.11 [R2 = 0.50]); however, this 
approach still requires specialized equipment and technical capacity.

This study aimed to build on those efforts by using a combi-
nation of new tools (eg, proximity sensors and machine learning 
models) and more comprehensive physical measurements (eg, emis-
sions, stove usage, and air change rates) to help understand which 
approaches may improve upon the predictive capacity of past ef-
forts. Specifically, we sought to: (i) adapt and refine current phys-
ical modeling approaches used by the World Health Organization 
(WHO)12 and the International Organization for Standardization 
(ISO)13 (for deriving air quality-based stove performance targets) to 
predict personal exposures to PM2.5; and (ii) develop multivariable 
and machine learning models that predict personal PM2.5 exposures 
based on physical and behavioral parameters. All of these model-
ing approaches are potentially important for estimating personal 
exposures to HAP. They may be used to support characterizing ex-
posures being estimated as part of health research efforts (eg, ex-
posure response and/or intention-to-treat studies for various health 
endpoints), or efforts to characterize population health impacts (eg, 
burden of disease estimates). The single-zone model also has practi-
cal implications for linking stove emission performance with indoor 
air quality and exposures, and thus characterizing its performance 
may aid future WHO and ISO efforts to apply the model for deriving 
performance targets.

We also sought to conduct the work in a location where the mod-
eling approaches could have substantive applicability, and the data 
collected for the inputs could help fill knowledge gaps. In Kenya, 
traditional cookstoves and open fires are estimated to cause nearly 
16 600 premature deaths every year, of which 4900 are children.14 
While 67% of Kenyan households rely primarily on biomass for their 
cooking needs,15 the country also has a relatively strong market for 
modern biomass cookstoves and clean cooking energy sources. The 
Kenyan clean cooking market is supported by innovative consumer 
finance programs such as pay-as-you go systems and microfinance.16 
A national charcoal production and sale ban enacted in 2019 may be 
accelerating household energy transitions. Kenya has also lowered 
import taxes on cookstoves and on liquefied petroleum gas (LPG), 
which is currently exempted from value-added tax.17 There are lim-
ited data on stove emissions and HAP exposure in Kenya. To our 
knowledge, the only published field emission performance studies 
on stove interventions focused on charcoal and kerosene.18,19 The 
data on personal exposures are also limited, with available studies 
reporting only carbon monoxide20 or associated with only wood-
fueled stoves.21

Here we present results from our model development and as-
sessment in Kenya to predict HAP exposures. While not a substi-
tute for direct field studies of exposure, these models could help 
guide programmatic decisions toward the most effective household 
energy solutions and enhance future HAP-related risk assessments.

2  |  METHODS

2.1  |  Study design and field site

Data collection for this modeling effort was conducted as a sub-
sample of research being conducted by the NIHR CLEAN-Air(Africa) 
Global Health Research Group (GHRG) in Kenya, a project led by 
the University of Liverpool and Moi University in Eldoret, Kenya. 
The CLEAN-Air (Africa) GHRG works directly with government 
ministries in Cameroon, Ghana, and Kenya to help understand and 
estimate the potential public health and climate impacts of scaling 
adoption of clean cooking in the form of LPG to achieve announced 
policy targets.22 Research by CLEAN-Air(Africa) in Kenya included 
rapid survey data on fuel usage and household characteristics from 
2248 homes from Turbo and Kesses, rural/peri-urban communi-
ties in Western Kenya near Eldoret. The most common traditional 
stoves in the study area were traditional three-stone-fires, jiko-style 
charcoal stoves, and handmade mud stoves (Chepkube stoves; see 
Figure S2). None of the stoves had chimneys or other venting mecha-
nisms. In-depth surveys were conducted in a subset of ~400 homes 
(approximately 200 exclusive biomass- and 200 primary LPG-using 
households) participating in the rapid survey. A subset of 100 of those 
homes (50 from each fuel use group) received personal exposure and 
household-level PM2.5 and CO measurements along with monitor-
ing of all their stoves. A further subset of 69 of the 100 households 
(n = 57 after removal of samples which had a damaged filter, flow 

Practical Implications

Reliable and accurate models for estimating HAP exposure 
are valuable tools for researchers and program evalua-
tors, and these models suggest a promising step forward. 
However, the substantial exposure contrast between the 
LPG and biomass user groups was largely responsible for 
the relatively good performance of the simple model, with 
fuel type being the most important predictor. This caveat 
implies that the model performance may rely on those 
large exposure contrasts, which are not always evident. 
Testing and further developing the modeling approaches in 
different contexts (fuels, geographies, stove use patterns, 
household environmental characteristics) would help char-
acterize how robustly they operate and/or the degree to 
which they may be applied universally or tuned to specific 
conditions.
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error, or runtime error, in accordance with those criteria described 
in Chartier et al.23), primarily using LPG (n = 32), wood (n = 32), or 
charcoal (n  = 7), were selected for this study to receive additional 
measurements of emissions, room/stove proximity, and living area 
PM2.5 and CO measurements. A summary of measurements, cross-
referenced with the applicable models, is presented in Table 1.

Household selection and assignment to the study groups were 
informed by results from the rapid and in-depth surveys. Field 
measurements for this work were conducted from October 2019 
to January 2020, encompassing the dry season. Although the 
climate throughout the year is generally temperate, and cooking 

occurs primarily indoors, it is conceivable that ventilation and fuel 
usage patterns may change over the seasons, influencing model 
performance.

Ambient sampling was conducted concurrently with household 
sampling in most cases. A subset of 28 homes were selected for more 
intensive sampling that included stove usage monitoring (SUM) for up 
to four months and HAP monitoring for up to four days (Table S4). 
During emission sampling in these homes, stratified kitchen CO and 
PM2.5 concentrations were sampled at heights of 1 and 2 m, in addition 
to the typical 1.5 m height for kitchen concentrations. A map of the 
study area and installation photographs can be found in Appendix S1.

TA B L E  1  Measurement and model overviews

Model Description

Single-zone (SZ) Estimates kitchen and personal concentrations using physical, mass-balance approach

Linear regression (LR) Predicts personal exposure using multivariate linear models

Kitchen exposure factor (KEF) Uses the ratio of kitchen concentrations to personal exposure to predict personal exposures in 
homes where only kitchen concentrations were measured

Machine learning (ML) Predicts personal exposure using ensemble supervised learning techniques

Sampling period and instrument measures

Measurement
Emission measurements during a 
cooking event 24-h measurements

Intensive measurements 
(1–4 days)

Personal exposure RTI MicroPEM (PM2.5)
Lascar CO (CO)
Berkeley Air Beacons (participant location)
SZ, LR, KEF, ML

Berkeley Air Beacons 
(participant location)

Kitchen HAP RTI MicroPEM (PM2.5)
Lascar CO (CO)
SZ, LR, KEF, ML

Berkeley Air PATS+ 
(PM2.5)

Lascar CO (CO)

Secondary HAP Berkeley Air PATS+ (PM2.5)
Lascar CO (CO)
LR

Berkeley Air PATS+ 
(PM2.5)

Lascar CO (CO)

PM2.5 Emissions UPAS (PM2.5)
Berkeley Air
PATS+ (PM2.5, placed at 1 m, 1.5 m, 2 m)
SZ

- -

Gas emissions (CO, CO2) TSI (CO)
Lascar CO (CO, placed at 1 m, 1.5 m, 2 m)
SZ

- -

Participant Behavior Observation Berkeley Air Beacon Loggers (participant 
location)

Survey (time activity, fuel use, 
socioeconomic status)

LR, ML

Berkeley Air Beacon 
Loggers (participant 
location)

Survey (time 
activity, fuel use, 
socioeconomic 
status)

Stove use Geocene SUMS (temperature loggers)
SZ, LR, KEF, ML

Environment Kitchen volume, air exchange rate, housing characteristics
SZ, LR, KEF, ML

Ambient UPAS (PM2.5), PATS+ (PM2.5), Lascar CO (CO)
SZ, KEF

A brief description of the various models is provided followed by the measures used by those models, which are cross-referenced with the applicable 
model's initials. Measurements were conducted at multiple time scales, from the measurement of single cooking events to multi-day household air 
pollution monitoring.



1444  |    JOHNSON et al.

2.2  |  Data collection and analysis methods

2.2.1  |  Emission measurements

Emission samples were collected during uncontrolled cooking 
tests in participants’ homes, where the cooks were instructed 
to prepare a meal as they normally would, without altering stove 
operation or cooking techniques. The emission sample was col-
lected with a multi-port probe suspended in the smoke plume 
(Figure  S3), and the sample stream was drawn through a Teflon 
filter after a PM2.5 size cut cyclone to determine PM2.5 mass depo-
sition. Carbon dioxide (CO2) and CO were measured with real-time 
instrumentation (TSI IAQ CALC 7545). Background concentra-
tions of CO2, CO, and PM2.5 were measured in the kitchens for 
at least 5  minutes immediately before and at least 10  minutes 
immediately after each sampling event (see Figure S10) and sub-
tracted from those measured in the emission plume. Samples with 
more than 15% of the CO or CO2 readings above the instrument 
maximum measurable value were removed from analysis. If real-
time measurements of PM2.5 concentrations exceeded 50 µg/m3 
in the home before the emission test, testing was delayed until 
a lower background concentration was observed. Filter analyses 
were performed at Colorado State University (Fort Collins, CO, 
USA) using an electronic microbalance (Mettler Toledo, USA) 
with 0.1 µg resolution in a temperature and humidity-controlled 
chamber. Mass depositions were gravimetrically determined by 
weighing the filters before and after sampling and correcting for 
handling effects by using the median mass deposition of collected 
blank filters (n = 20, 5.8 µg [2.5% of the average deposition]). Limit 
of detection (LoD) was calculated as three times the standard de-
viation of field blanks (7.8  µg [3.6% of the average deposition]) 
of the mass deposition on the blank filters.24 Black carbon was 
optically quantified by transmittance (before and after sampling) 
using a SootScan OT21 analyzer (Magee Scientific, Berkeley, CA, 
USA), and adjusted using calibration factors as reported in Garland 
et al.18

Emission factors were determined using the carbon balance ap-
proach, as has been done in previous studies of stove emissions and 
as is described in the ISO protocol for stove emission testing.25–27 
Emission rates were calculated by dividing the total emissions during 
a sampled stove use event by the amount of time the event lasted. 
Observations and measurements of operational conditions, which 
may affect emission performance, were also recorded for the dura-
tion of each cooking event, such as lighting techniques, pot types, 
and fuel conditions.

2.2.2  |  Ventilation rate determination

Ventilation was measured via tracer gas method, according to the 
standard WHO protocols specifically designed for the single-zone 
box model. Briefly, CO levels were elevated in the cooking area due 
to the emission source, and the natural log of the rate at which the 

gas decreased at the end of the cooking event was converted into 
air changes per hour (Figure S10).28 The air change rates were calcu-
lated using data from the CO monitor placed at 1.5 m height, and we 
also assessed it using data from the monitors at 1 and 2 m for homes 
that had intensive sampling. In cases where the kitchen monitor did 
not provide valid data, the data collected by the emission monitoring 
system were used to estimate the ventilation rate.

2.2.3  |  Stove usage monitoring

Stove usage was directly measured at 5-min intervals on all stoves 
in the study homes using Geocene stove use monitors29 (SUMs) 
(Geocene, Vallejo, CA, USA) and participant surveys. To ensure 
proper SUM placement (~15  cm from center of flame), data were 
examined from weekly automated emails to check for temperatures 
exceeding the acceptable range (100–500°C) and immediate correc-
tions were applied as needed. Placement of the SUMs was piloted on 
all stove types to ensure successful data collection (see Figure S8). 
We conducted one week to six months of SUMs monitoring, de-
pending on feasibility given study logistics.

To generate cooking events from the raw SUMS tempera-
ture time series, this project used two versions of the Geocene 
FireFinder algorithm28 (see Section S6 in Appendix S1). An exam-
ple time series is shown in Figure S7. The time cooked with each 
stove type per day was a direct input into the single-zone model 
and was used to predict kitchen-level concentrations, as well as 
personal exposure.

2.2.4  |  Ambient monitoring

Ambient monitoring of gravimetric and nephelometric PM2.5 and 
real-time CO was carried out during most emission sample col-
lection periods. An ambient monitoring station was designated 
in a rural background location in the Kesses region (0°25'07.7"N 
35°19'24.4"E). Gravimetric and black carbon PM2.5 measurements 
were collected (UPAS, Access Sensor Technologies, Fort Collins, CO, 
USA), alongside real-time PM2.5 (PATS+, Berkeley Air Monitoring 
Group, Berkeley, CA, USA) and CO (Lascar EL-USB-300, Lascar 
Electronics, UK). Instrument inlets were placed at a height of 6 m, 
and away from trees, buildings, or other obstructions (see Figure S4), 
and there were no substantial nearby air pollution sources except for 
one biomass burning kitchen ~50 m from the site.

2.2.5  |  Personal exposure monitoring

Personal exposure was measured for the primary cook using the RTI 
MicroPEM or RTI Enhanced Children's MicroPEM monitors (ECM, 
RTI International, Research Triangle Park, NC, USA), combined 
gravimetric and real-time nephelometric PM2.5 monitors. MicroPEM 
(0.40 L/min, 50% duty cycle, 25 mm PTFE filter) and ECM (0.30 L/
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min, 50% duty cycle, 15  mm PTFE filter) filter samples were pre- 
and post-weighed at RTI International and the field blank-corrected 
mass concentrations were used to post-correct the nephelometer 
readings, which are sensitive to aerosol physical properties (eg, size 
distribution, real and imaginary refractive indices) that may vary by 
source type and atmospheric conditions. The filters were equili-
brated in a temperature and humidity-controlled weighing facility 
(21°C, 35% RH) prior to pre- and post-weighing on an ultramicro-
balance (Mettler Toledo UMX2, 0.1 µg readability). Clean filter han-
dling and MicroPEM calibration protocols were applied to ensure 
high data quality throughout the study. The built-in accelerometers 
were used to assess personal monitor wearing compliance via a roll-
ing standard deviation method, and a 20-min rolling average was 
applied to the magnitude of the composite acceleration. Movement 
was recorded during 42% of the 24-h monitoring period (Table 4). 
Considering only daytime hours (5 a.m. to 9 p.m.) for the charcoal, 
Chepkube, LPG, and traditional stove groups, movement was re-
corded for 49%, 73%, 52%, and 63% of the time, respectively. These 
values are reasonably high given that participants did not wear the 
equipment while sleeping, bathing, or other activities when it is not 
practical. All data were retained regardless of compliance fraction.

Personal carbon monoxide exposure monitoring was performed 
using Lascar EL-USB-CO300 monitors. All CO sensors used in the 
study underwent two-point calibrations before the study with 
certified calibration standards in Berkeley Air Monitoring Group's 
California laboratory. Linear calibration corrections were applied to 
the data. The data were then manually reviewed as a sense check 
and filtered in cases of clear instrument malfunctions.

2.2.6  |  Household air pollution monitoring

Household air pollution concentrations were also measured with 
the MicroPEM as part of the Kenyan CLEAN-Air (Africa) research. 
These data were supplemented with additional real-time PM and CO 
instrumentation (PATS+ and Lascar CO). In a subset of households, 
PATS+CO (Berkeley Air Monitoring Group, Berkeley, CA, USA) were 
used rather than the standard PATS+, as its integrated high-precision 
CO electrochemical sensor allowed for comparison with the Lascars. 
A sampling pack containing a MicroPEM, PATS+, and Lascar CO 
monitor was installed in the kitchen area for 24 h, including during 
the emission sampling event. PATS+ and Lascar CO monitors were 
also placed in a separate room where the participants reported 
spending the most time (generally the living area). In a subset of 28 
households, a set of three evenly spaced Lascar CO monitors was 
also hung between the ceiling and floor (at 1, 1.5, and 2 m in height) 
in a stratified sampling configuration to capture the spatial variabil-
ity of pollutants in the kitchen space, which informs the variability of 
the ventilation conditions within the room, and in turn the variability 
of kitchen to personal exposure estimation methods. In the 28 inten-
sive homes, PATS+ and Lascar CO monitors in the kitchen and living 
areas were left installed for up to five days to assess day-to-day vari-
ability in HAP concentrations.

2.2.7  |  Beacon-based time-activity monitoring

The Berkeley Air Beacon Logger System is a time-activity monitoring 
system specially designed for household energy applications.10,30 
The system is composed of two components, a coin-sized Bluetooth 
Beacon, which safely emits a unique ID multiple times a second over 
Bluetooth Low Energy, and a Beacon Logger, which records the ad-
dress and the strength of the Beacon's emitted signal. The system 
components are low in cost, power consumption, and maintenance 
efforts, especially in comparison with personal exposure monitors.

Beacon Loggers were installed in all kitchens and living areas, 
and Beacons were given to the primary cooks to wear during the 
24-h monitoring period from which emission data were captured. 
Users generally wore the two Beacons on a necklace or in the 
pocket alongside the exposure monitors. A minute-wise time series 
of presence in each microenvironment was generated for the user 
by associating the signal strength of their Beacons with the fixed 
locations of the Beacon Loggers (the primary kitchen and the living 
area where they spent most of their time during the day). Presence 
in a given location was assigned to the location with highest signal 
strength, on a minute-by-minute basis. If neither logger recorded a 
signal, the location was classified as “ambient.”

A performance check of the system, called a walkthrough, was 
carried out at each home before the start of the deployment, to as-
sess system performance. This entailed leaving the equipment in 
each area for a five-minute period, to determine whether the classi-
fication was correct (see S5). In the subset of intensive households, 
the Beacons and Beacon Loggers remained in place alongside PATS+ 
and Lascar CO microenvironment monitors for a period of up to five 
days. This longer-term period allowed us to assess participant ac-
ceptability of protocols, model performance, and compare day-to-
day within-person variability to between-person variability.

2.2.8  |  Behavioral factors

Time activity, fuel use, and cooking behavior data were collected 
using standard questionnaires that have been used both in this part 
of Africa and in other countries, including India, Mongolia, Laos, and 
Cambodia. Additional questions were added based on their potential 
utility to contribute explanatory power to statistical models and in-
cluded parameters such as trash-burning, animal fodder preparation, 
and smoking habits. Additional information on socioeconomic status 
and educational status was evaluated. Socioeconomic status was as-
sessed using principal component analysis (PCA) on asset ownership 
and home characteristic variables as per Vyas & Kumaranayake31 
to generate a five-category index. Households were assigned to a 
category using the prediction from the first principal component 
of the analysis. The first index categorized was associated with low 
ownership of assets (such as cars, smart phones, and computers), 
lower use of LPG, and outdoor sanitation facilities, while the fifth 
was characterized by high ownership rates of those assets, indoor 
sanitation facilities, and access to water indoors (Table S2). Only the 
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socioeconomic status, basic kitchen characteristics, and primary 
fuel category were used in models. The remaining survey data are 
planned for use in subsequent analyses. Survey data were collected 
with Mobenzi Researcher (Cape Town, South Africa), a tablet-based 
data entry system that has been used extensively in similar studies32 
and minimizes the likelihood of transcription errors and data loss.

2.3  |  Modeling approaches

The four primary modeling approaches are outlined below. Note that 
our primary metric of performance was R-squared, as it provides an 
indication of how well the model explains variability in the predicted 
measure, and also provides a basis of comparison with previously 
reported models. Given that the best performing previous models 
have reached R2 values of approximately 0.5, this level provides a 
reasonable benchmark for comparison.

2.3.1  |  Single-zone model

We used the single-zone, mass-based model employed by ISO and 
WHO to estimate kitchen PM2.5 concentrations and derive emission 
performance targets.12,13 The model predicts room concentrations 
of pollutants using input distributions of emission rates and usage 
times of the sources (in this case, stoves); a room's ventilation rate 
and volume; the fraction of emissions from the sources that enter 
the room (important for chimney stoves); and the background/ambi-
ent concentration. The mathematical description is provided below:

where
C(t) = pollutant concentration for a given time point
qx = emission rate for source x (mass/min)
fx = fraction of emissions from source x that enters the kitchen 

environment
α = first-order loss rate (nominal air exchange rate) (changes/min)
V = kitchen volume (m3)
t = time interval (1 min)
Co = concentration from preceding time interval (unit mass/m3)
Cb = background concentration
The model produces 24  h of minute-by-minute concentration 

estimates, where the emission rates for the respective sources are 
inputs for three discrete, evenly spaced cooking times. The sum of 
these periods is the device usage time, which is also a model input. 
To calculate the predicted 24-h mean concentration in the kitchen 
(Ck), the concentrations for each time point are summed over the 
day and divided by the number of minutes in a day. To estimate ex-
posure, the 24-h mean concentration Ck was multiplied by a Kitchen 
Exposure Factor (KEF), as shown in Equation 2 below. The exposure 
ratios are ideally location-specific (as possible here), though global 

averages have been applied such as those from the Global Burden 
of Disease Study (0.742 for women, 0.628 for young children, 0.450 
for men).6 The personal exposure based on this ratio (Er) is defined 
as follows:

Each set of household input data was run independently, so 
kitchen exposure ratios (r above) could be calculated for each sam-
ple and by stove-fuel group and compared against the respective 
kitchen and personal exposure concentrations. The model was then 
tuned based on the relationships between modeled and measured 
concentration during cooking events, and run through Monte Carlo 
simulations (Risk Analyzer software package, Add-ins LLC, DE, USA), 
to predict distributions of personal exposures for the different fuel 
use groups.

2.3.2  |  Prediction using statistical models

In addition to the single-zone modeling of the first approach, PM2.5 
exposures were predicted using linear statistical models and ensem-
ble or stacked modeling techniques. Covariates for both modeling 
approaches included sensor-based (indoor location, stove usage pat-
terns, kitchen pollutant measurements) and survey (characteristics 
of the home, kitchen, fuel, etc.) data.

Linear regression
We developed models with different sets of covariates, beginning 
with those that are easiest to collect and most crude (survey data) 
and continuing with increasingly complex data streams. Previous 
work has shown that some statistical variation in exposure can be 
explained through data easily obtained via questionnaire.33–35 We 
also compared models using both sensor-based measurements and 
modeled estimates of kitchen concentrations.

We used linear regression (R 3.6.2 and 4.0.2) to model PM2.5 
exposures among primary cooks. 50 households provided data that 
passed quality checks for use in predictive modeling. We imputed 
missing covariate data by using the stove-group specific median 
values. The dependent variable—the cook's measured exposure to 
PM2.5—was log-transformed to meet normality requirements for lin-
ear models.

Univariate models assessed the relationship between expo-
sure proxies and measured concentrations and exposures. The 
use of kitchen concentrations and ratios of concentrations to ex-
posure were assessed with measures of correlation (Spearman's 
ρ). Multivariable models were used to assess the relationship be-
tween personal exposure and sociodemographic characteristics, 
stove-fuel energy use patterns, household characteristics, and 
other physical measurements (time activity, stove use, etc.) in 
the home. Variable selection occurred using multiple modalities. 
First, we used an automatic variable selection algorithm (from 
the “leaps” r package) to pick parameters that optimized between 

(1)C (t) =
q1f1 + q2f2 + q3f3 +…qnfn

�V

(

1 − e− �t
)

+ Co

(

e− �t
)

+ Cb

(2)Er = Ck ∗ KEF
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model comparison parameters, including adjusted R2, Bayesian in-
formation criterion (BIC), and Malloy's Cp (shortened to Cp). Models 
identified using the automatic variable selection algorithm were 
further screened using 10-fold cross-validation. The model form 
that minimized RMSE during 10-fold cross-validation was selected 
for further evaluation. Second, based on our prior knowledge and 
a review of the literature, we evaluated sets of predictors that we 
anticipated would be easier to collect in the field using surveys, 
less intrusive monitoring devices placed in a kitchen, or less intru-
sive personal monitors.

Kitchen exposure factor
We investigated the utility of KEFs as potential exposure proxies. 
We evaluated the predictive power of three literature-based KEFs: 
the single estimate from the Global Burden of Disease and two es-
timates derived from Shupler et al.5 We also evaluated the utility of 
subsets of our measured KEFs to predict “true” exposures. For each 
stove type, we sampled subsets (of size ranging from 1 to 20) of the 
total set of measured KEFs. For each size subset, 10 random sam-
ples were generated. We calculated the mean stove-specific KEF for 
each subset and estimated exposures by multiplying this mean by 
the corresponding kitchen concentration. We then calculated the 
RMSE, comparing the KEF-subset derived exposures to the meas-
ured personal exposures.

Machine learning
Finally, we evaluated machine learning models using SuperLearner 
(SL)36 as a proof-of-concept, following the example of Hill et al.8 SL 
uses cross-validation to estimate the performance of multiple types 
of machine learning models or parameterizations of the same type 
of model. The same samples and imputation for mission data were 
used as for the regression modeling, though exposure estimates 
were was not log-transformed as a normal distribution is not a re-
quired assumption for these machine learning models. SL as imple-
mented created a cross-validated ensemble—a weighted average of 
these machine learning models—for prediction. Individual machine 
learning models and the ensemble performance were evaluated. All 
machine learning models utilized in SL were run with default param-
eters and 10-fold cross-validation. The ensemble learner was exter-
nally cross-validated (20-fold). Linear and SL model performance 
was compared using adjusted R2 and RMSE.

3  |  RESULTS

Results of the four primary modeling approaches are outlined below. 
Note that our primary metric of performance was R-squared, as it 
provides an indication of how well the model explains variability in 
the predicted measure, and also provides a basis of comparison with 
previously reported models. Given that the best performing previ-
ous models have reached R2 values of approximately 0.5, this level 
provides a reasonable benchmark for comparison. Root mean stand-
ard error (RMSE) is also used as a measure of model precision.

3.1  |  Single-zone model

Table  2 presents the summary statistics for the input parameters 
measured during cooking events for the single-zone model, as well as 
the corresponding kitchen concentrations. Ventilation (mean = 17.8 
air changes per hour [ACH]; range = 6–73 [ACH]), kitchen volumes 
(mean  =  21.1  m3; range  =  5–52  m3), and cooking event durations 
(mean  =  51; range  =  7–125  min/event) were generally in line with 
those used by ISO and WHO,12,13 as well as other similar modeling 
exercises.37–39 Kitchen event concentrations (mean  =  886  µg/m3; 
range of 10–16 161 µg/m3 for PM2.5, and mean = 28.6 ppm; range = 0–
196 ppm for CO) and 24-h exposures for PM2.5 (mean = 135 µg/
m3; range = 14–686 µg/m3) were reasonable given previous studies' 
ranges of 24-h exposures for these fuel user groups.3,40 Emission 
rates were also similar to estimates for wood and charcoal stoves 
in the region.19,27 Our estimated LoD for PM2.5 emission rates was 
approximately 5 mg/min, which was greater than what we measured 
for LPG. We therefore have used the PM2.5 emission rates for LPG 
reported by Weyant et al.41 and Johnson et al.,19 who were able to 
measure them in the field. Overall, the emission performance and 
pollutant concentrations were highly variable, ranging from very 
clean (LPG) to highly polluting (wood stoves), with charcoal in be-
tween. Ambient measurements of PM2.5 and CO were also made 
(see Table S3) and showed consistently low levels (6.8 ± 5.4 µg/m3 
for PM2.5, 0.9 ± 2.7 ppm for CO). Note that stove/fuel performance 
metrics not directly used in the modeling efforts, including combus-
tion efficiency, emission factors (PM2.5, CO, and black carbon), and 
firepower, can be found in Table S1.

The relationship between modeled and measured estimates of 
kitchen concentrations for PM2.5 and CO is shown in Figure 1. There 
are clear positive correlations, following the anticipated trend of 
lower pollutant concentrations during LPG use, and higher during 
biomass stove use; however, there is considerable scatter (PM2.5 
model RMSE = 767 μg/m3; CO model RSME: 30 ppm), with the model 
explaining 45% of the variability in the measured event concentra-
tions of both PM2.5 and CO (PM2.5: R2 = 0.45, p < 0.01; CO: R2 = 0.45, 
p  <  0.01). The model also overestimates the measured kitchen 
concentrations (~10-fold for PM2.5) and (~6-fold for CO). This bias 
is similar to what was reported by Piedrahita et al.42 and Johnson 
et al.,43 who both found the model to overestimate measured con-
centrations in the kitchen. There are several reasons for this poten-
tial bias, the most likely being due to the model assumptions that 
all emitted pollutants instantaneously and perfectly mix throughout 
the room. Indeed, measurements of the stratified air pollution con-
centrations shown in Table S6 indicate substantial pooling of PM2.5 
and CO higher in the kitchen. It is likely that a substantial fraction 
of emissions escape through windows, eaves, or other openings 
before mixing throughout the room, and mixing is incomplete, with 
higher concentrations pooling higher in the room. The variability in 
mixing and stratification of pollutants also likely contributes to the 
amount of scatter in the plots. It is also evident that modeled PM2.5 
emissions are clustered near the y-axis, potentially due to setting the 
LPG emissions rate to 1 mg/min (LoD). This potential artifact may be 

https://www.zotero.org/google-docs/?aO2VjA
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shifting the overall relationship between the modeled and measured 
concentrations, resulting in a high y-intercept.

Our stratified CO samples show mean concentrations sequen-
tially increased from 14 ppm at 1 m above the ground, to 20 ppm at 
1.5 m above the ground (HAP standard protocol height), to 28 ppm 
at 2 m (presented by fuel type in Table S6). Stratified samples of CO 
by Johnson et al.43 suggested a similar pattern, and MacCarty et al.44 
did a systematic investigation of the model's performance in a test 
kitchen, showing that PM2.5 concentrations increased in an S-shaped 
curve, pooling at the ceiling. These two studies also found that a 
height of ~1.5 m was likely the best proxy height to capture the aver-
age room concentration and/or exposure of a standing adult.

To model 24-h PM2.5 exposures, we applied simple correction 
factors (ratio of measured to modeled means: 0.07, 0.24, and 0.50 
and for wood, charcoal, and LPG, respectively) to normalize model 
response to the measured kitchen concentrations and then ap-
plied the measured main cook KEFs (0.69, 0.85, and 0.83 for wood, 

charcoal, and LPG, respectively). The single-zone model was run 
through a Monte Carlo simulation (10  000 iterations) for each of 
these fuel user groups, defined by the greatest amount of a given 
fuel used during the day exposure was measured. All stoves used 
within the house for the given day were included.

The modeled distributions generally compared well with the 
measured 24-h PM2.5 exposures. Figure 2 shows the fitted distribu-
tions, illustrating the overlap between the modeled and measured 
estimates (LPG in blue, charcoal in gray/black, wood in red/pink). 
The LPG and wood distributions compare most favorably, with their 
interquartile ranges overlapping substantially, and mean and medi-
ans reasonably close (see Table 3). The modeled exposures for char-
coal were lower than that of the measured concentrations (mean 
and median values were ~70% and 40% of the measured estimates, 
respectively), though this comparison is the most tenuous as only 
seven samples were available for analysis.

Overall, this approach shows promise that the model can be 
applied to estimate distributions of PM2.5 exposures, though care 
needs to be taken to ensure that inputs for normalizing the model 
account for bias. Given the scatter in the relationship of individual 
estimates, it is also not recommended to use the model for predict-
ing specific households, but rather as a tool for understanding how 

TA B L E  2  Summary statistics for cooking event measurements 
used in the single-zone model

Mean Median SD Range n

Kitchen PM2.5 (μg/m3)

LPG 135 92 130 10–531 28

Charcoal 855 642 970 28–2442 6

Wood 2048 1580 2870 71–16 161 29

Kitchen CO (ppm)

LPG 4.8 2.6 5.1 0.0–15.6 27

Charcoal 70.4 63.8 73.9 5.9–150.2 4

Wood 44.3 38.2 39.8 0.4–196.1 28

PM2.5 emission rate (mg/min)

LPG 1a  NA 0.5a  0.1a –2.5a  NA

Charcoal 15 15 10 3–30 7

Wood 159 147 65 69–343 29

CO emission rate (g/min)

LPG 0.04 0.05 0.02 0.001–0.20 30

Charcoal 1.87 1.41 0.87 1.1–3.1 7

Wood 1.68 1.50 0.79 0.50–3.6 29

Ventilation (air changes/h)

LPG 14.3 12.2 8.3 5.5–40.0 30

Charcoal 27.0 19.0 21.4 12.1–72.6 7

Wood 18.3 17.5 7.9 7.1–38.7 32

Kitchen volume (m3)

LPG 16.5 13.2 12.2 5.4–51.9 32

Charcoal 24.8 23.2 9.6 12.8–41.5 6

Wood 25.0 22.3 11.5 11.1–49.6 32

Event duration (min)

LPG 45 45 28 7–125 31

Charcoal 54 50 16 29–81 7

Wood 58 54 26 21–116 30

aAssumed from Weyant et al. 2019 and Johnson et al. 2019. 

F I G U R E  1  Relationships between the single-zone modeled and 
measured kitchen concentrations (PM top, CO below) during the 
sampled cooking events
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group-level exposures may be impacted by changes in stove use, 
stove performance, environmental conditions or other parameters 
that may change over time or as a result of an intervention.

3.2  |  Statistical models

3.2.1  |  Linear regression

We selected parsimonious models with between 6 and 7 predictors 
out of the >20 evaluated to offer an optimal compromise between 
root mean-squared error (RMSE) and adjusted R2. As with the single-
zone model, we focused on predicting PM2.5 due to the importance 
of its association with health impacts. We first present the summary 
statistics for the variables included in model selection in Table  4. 
Note that these values are slightly different from those from the 
single-zone modeling exercise, as the data completeness changed 
with the exclusion of the direct emission-related measurements. 
Summary findings for the regression models are shown in Table 5.

For the entire dataset, survey data alone—consisting of a measure 
of kitchen volume, the primary stove type, and a socioeconomic index 
comprised of assets, housing characteristics, and other variables 
(Table S2)—had an adjusted R2 of 0.51 and a root mean-squared error 
of 130. The most predictive model (Figure 3) for the overall dataset 
included stove type, measures of CO (personal, kitchen, and living 
room), kitchen volume and ventilation, and a microenvironmental PM 
estimate. The R2 of this model was 0.76, and the RMSE was 86 (RMSE/
mean of measured exposures [nRMSE] =0.66). Of note, and unsurpris-
ingly, all predictive models poorly predicted overall dispersion in bio-
mass households, a phenomenon consistent with the literature.

Although the microenvironmental estimate using the beacon 
system (model 4) significantly improved model performance over 

just kitchen PM2.5 data from model 2, it did not significantly improve 
the model fit over the survey data (model 1), likely due to the strong 
predictive ability of the survey data in this dataset. Similarly, adding 
kitchen PM2.5 to the survey data (as in model 5) did not significantly 
improve model fit over the survey-only model.

3.2.2  |  Kitchen exposure factors (KEFs)

For the current set of measurements, kitchen PM2.5 concentra-
tions adjusted by KEF values from the literature were a poor pre-
dictor of exposure (Table 6). The exposures predicted by the global 
burden of disease KEF were significantly different from the meas-
ured exposures (Wilcoxon rank sum test, p  <  0.001) and exhib-
ited wide variability within and between primary stove types. The 
KEFs derived from Shupler et al.5 performed better, with lower 
RMSEs and no significant differences in the distributions between 
measured and modeled estimates. Mean measured KEFs in this 
study were 0.32, 0.80, and 1.02 for the LPG, traditional biomass, 
and charcoal groups, respectively. Additional summary statistics 
for measured KEFs by stove type are in Table S5, and the distri-
butions by stove type are shown in Figure 4. The relatively high 
number of KEFs exceeding 1 in LPG households indicates that ex-
posure may have been driven by sources outside of the kitchen, 
consistent with what one would expect for households that rely 
on LPG as a cooking fuel.

A random sampling procedure was used to determine the av-
erage RMSE between KEFs and personal exposure, with a varying 
number of households (Figure 5). After 7–10 days, we note no value 
of additional measurements for this dataset. We also note that we 
are bounded overall by the poor predictive power of KEF in this 
dataset.

F I G U R E  2  Modeled and measured probability distributions (fitted) of PM2.5 exposures. The dashed vertical line at 35 µg/m3 represents 
the WHO interim target-1 annual guideline
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3.2.3  |  Machine learning

We utilized a limited set of potential learners available in the 
SuperLearner R package to estimate personal exposure with the 
same set of predictors as in the linear regression modeling proce-
dure: random forest (SL.randomForest), extreme gradient boosting 
(SL.xgboost), support vector machines (SL.ksvm), recursive parti-
tioning and regression trees (SL.rpartPrune), and generalized linear 
modeling with regularization (SL.glmnet). The independent variable 
(personal PM2.5 exposure) in this case was not log-transformed, an 
important difference from the linear regressions. 20-fold external 
cross-validation was performed to select a discrete learner from the 
algorithms selected. The best performing—based on a mean square 
error loss function—was extreme gradient boosting (selected in 85% 
of cross-validation runs), followed by generalized linear modeling 
(10%), and random forest (5%). The cross-validated ensemble model 
weights followed this trend (not shown). Comparisons of individual 
models and the ensemble model are in Figure 6 and Table 7.

Cross-validated machine learning models and the ensemble 
model performed reasonably well in predicting exposures and war-
rant further investigation—including creation of additional indepen-
dent variables using real-time data streams, combinations of existing 
variables, and additional questionnaire data.

4  |  DISCUSSION

4.1  |  Model application considerations

Collecting personal PM2.5 exposure data is challenging due to cost, 
technical requirements, and logistical considerations, making predic-
tive models important tools for assessing the health impacts of HAP 

exposure. To date, HAP exposure models have not been widely ap-
plied and performance has varied. Several past works have found 
that survey data have provided statistically significant predictive 
power for exposure estimation,7,34,35 and others have reported com-
parisons of kitchen and personal PM2.5 with varying success.9,10,45 
Additional studies have compared CO exposures (an easier meas-
urement) to PM2.5 exposures but found CO to be an unreliable sur-
rogate in many settings.46,47 A small number of studies have also 
evaluated the impact of collecting multiple days of measurements in 
homes or among participants to establish more stable estimates of 
PM2.5 concentrations.48–50

Dioniso et al.51 assessed modeling performance of expo-
sure to CO in children using survey-type data, and though not di-
rectly comparable to our work, found a model RMSE of 0.86 ppm 
(nRMSE = 0.74). Dionisio et al.52 also assessed the performance of a 
model in predicting child PM2.5 exposure from personal CO, survey 
data, and kitchen PM2.5 concentrations, but did not find strong re-
lationships in any of the model permutations (R2 < 0.01). Hill et al.8 
applied regression models and machine learning models to estimate 
PM2.5 exposure (n = 36) in a rural area of Laos, but reported adjusted 
R2 values below 0.3, and RMSE of 40.0  µg/m3 (nRMSE  =  0.39). 
Sanchez et al.7 used stepwise regression models with survey-based 
inputs to predict PM2.5 exposures in peri-urban South India with R2 
values ranging from 0.09 to 0.25.

Here, our models had R2 values ranging from 0.23 to 0.76, indi-
cating that overall performance was generally favorable compared 
that which has been previously reported. Our application of machine 
learning models was able to explain almost twice as much variability 
in exposure estimates (R2 0.23–0.57) than that by Hill et al.8 and 
the linear regression models explained up to three times (R2 = 0.32–
0.76) that of Sanchez et al,7 though there continues to be room for 
improvement in predictive power. The better performance may be 
the result of varying environmental factors between different study 
locations (eg, higher exposure contrasts), or recent improvements in 
measurement techniques. The survey-based model was moderately 
predictive of PM2.5 exposures (R2 = 0.51), which has significant impli-
cations being that surveys are a much simpler data collection method 
(compared with direct measurement of exposures or HAP). The best 
performing model used a combination of survey-based data and 
measurement, resulting in an R2 of 0.76 and a root mean-squared 
error of 85 µg/m3. Should the predictive capacities be robust, these 
modeling approaches provide substantial value in mitigating the 
need or extent of costly and complicated exposure studies.

Our use of SuperLearner was exploratory to show the potential 
utility of this type of predictive modeling. We likely did not take full 
advantage of algorithms implemented in SuperLearner, which may 
have benefitted from the creation of additional predictor variables, 
including features derived from the minute-to-minute real-time data 
(from the PM and CO monitors and Beacon system, eg). Future work 
with SuperLearner should define a robust set of potential predictors 
to maximize predictions. Such predictors could be derived strictly 
from survey data and combinations of survey-based variables and 
would provide an approach to apply machine learning without 

TA B L E  3  Comparison of modeled and measured 24-h PM2.5 
exposures (μg/m3)

Modeled Measured

LPG

Mean 41 43

Median 19 29

25th–75th percentile 10–41 27–46

n 10 000 19

Charcoal

Mean 80 115

Median 43 110

25th–75th percentile 21–92 50–121

n 10 000 7

Wood

Mean 296 225

Median 207 182

25th–75th percentile 113–386 104–292

n 10 000 21
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necessarily collecting hard-to-gather data, like personal exposure 
to pollutants or microenvironmental location. We additionally note 
that the generalized linear model used in SuperLearner performed 
less well than the linear model we used to estimate exposures. 
We identify two potential realizations for this difference: (1) the 
algorithms use different solvers to estimate the models (penalized 

maximum likelihood versus least squares) and (2) in the linear mod-
els, the outcome variable was log-transformed, whereas it was not 
transformed for SuperLearner.

The single-zone model used by WHO and ISO for setting emis-
sion targets did reasonably well predicting kitchen concentrations 
and exposures, after adjusting for its systematic overestimation. The 

TA B L E  4  Summary statistics for the 24-h datasets included in the regression models (mean, standard deviation, minimum, 25th 
percentile, median, 75th percentile, maximum, and number of valid samples)

Variable Mean SD Min 25th %-tile Median 75th %-tile Max n

Cook's personal PM2.5 exposure (µg/m3) 139 151 14 43 86 156 687 50

Compliance (fraction of 24-h period monitors 
in motion)

0.42 0.19 0.03 0.28 0.42 0.62 0.79 50

Kitchen PM2.5 (µg/m3) 492 673 26 50 192 695 3819 50

Secondary Area PM2.5 (µg/m3) 60 118 10 14 22 31 689 47

Ambient PM2.5 (µg/m3) 7 3 3 4 7 9 10 30

Cook's CO exposure (ppm) 4.7 5.7 0.0 1.5 2.7 5.0 32 44

Kitchen CO (ppm) 16.5 22.6 0.0 2.9 8.9 20.3 131 48

Secondary area CO (ppm) 5.0 7.7 0.0 0.0 1.1 8.7 38 49

Ambient CO (ppm) 1.2 2.9 0.0 0.0 0.0 0.2 10 38

Charcoal stove (min) 330 274 45 125 215 575 881 12

Biomass stove (min) 320 188 0 205 370 463 570 13

LPG (min) 126 92 15 73 99 180 410 21

Total cooking time using all stoves (min) 214 219 0 22 115 361 881 50

Beacon PM2.5 indirect exposure estimate 
(µg/m3)

255 514 7 37 73 401 3483 50

Beacon CO indirect exposure estimate (ppm) 5.1 5.6 0 0.6 2.9 8.0 24.0 50

Number of walls in the kitchen with open 
eaves

0.22 0.65 0 0 0 0 3 50

Kitchen volume (m3) 22.5 12.8 5.4 13.1 20.5 27.2 52.0 50

Open door area (m2) 2.1 1.3 0 1.7 1.9 2.6 6.0 50

Socioeconomic status index 1.56 2.9 −2.35 −1.05 0.93 4.19 7 50

Air exchange rate (1/h) 17.4 8.2 0.1 11.4 17.1 20.8 40.0 48

TA B L E  5  Linear model performance and fit statistics for the personal PM2.5 exposure estimation models

Model Adj R2 RMSE (μg/m3)

Overall (n = 50)

Mean (μg/m3) SD (μg/m3) pb 

1 Survey-type dataa  0.51 130 110 65 0.2

2 Kitchen PM2.5 0.32 206 115 180 0.47

3 Kitchen PM2.5 + CO 0.44 139 118 139 0.45

4 1 + Microenvironmental PM2.5 Estimate 0.53 135 114 89 0.30

5 1 + 2 0.52 131 112 80 0.27

6 1 + 3 0.59 112 118 106 0.42

7 Stove Type +Personal, Kitchen, 
Living room CO +Kitchen volume 
+Microenvironmental PM Estimatec 

0.76 86 124 105 0.55

Measured 139 151

aIncludes primary stove type, a socioeconomic index, and kitchen volume. 
bComparing predicted and measured values. 
cIdentical to the model selected by the variable selection algorithm. 
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combination of the single-zone model's correlation with measured 
kitchen concentrations and systematic overestimation suggests it is 
a reasonable tool for setting performance targets as it provides a 
conservative approach for linking emission performance with indoor 
air quality. Given that the model overestimates kitchen concentra-
tions, by potentially up to an order of magnitude, there may be room 
to adjust the modeling approach such that it provides more reason-
able estimates of kitchen concentrations while still erring on the side 
of conservativeness. Better characterizing the specific factors which 
contribute to the bias could help in calibrating the model for specific 
contexts, which would justify potential adjustments for its use in 
setting stove performance targets.

Previous work has shown that a kitchen exposure factor (KEF) 
alone has poor predictive power in some contexts.5 We found 
substantial variation in our measured KEFs by stove type, indicat-
ing that the common method of applying a single ratio globally 
likely misestimates exposure depending on the type of stove in 

use in households. Our biomass KEF (0.30) is close to the modeled 
estimate from Shupler et al.5 for users of wood-burning stoves 
(0.327). Our LPG KEF, contrastingly, is much higher (1.03) than the 
estimate reported by Shupler et al.5 (0.13). Given that exposures 
within the home are lower when clean-burning fuels are used 
and considering the relative contributions to exposure from out-
side the home (both from conducting activities outside the home 
and outdoor air penetrating indoors), our measured KEFs in LPG 
households seem reasonable.

For campaigns measuring mainly kitchen PM2.5 levels and mon-
itoring only a subset of personal exposures, our findings indicate 
that increasing the number of personal measurements can help 
provide better, less dispersed, and more predictive KEF estimates. 
Although no clear cutpoint for any stove type was evident, we no-
ticed consistent decreases in RMSE and variability as the number 
of samples included in KEF-based exposure estimates increased. 
Future measurement and modeling work should continue to dis-
entangle KEFs in other contexts, as factors such as kitchen layout, 
background contributions, and behavioral patterns are likely to 
vary.

4.2  |  Limitations

There is potential to reduce the burden of data collection on par-
ticipants for large-scale projects, as the performance of the expo-
sure estimation regression models that used survey data or less 
intrusive concentration measurements moderately explained ex-
posure variability. With the ability to collect survey, stove usage, 
and household air pollution data over multiple days, there are 
scenarios where this approach should be considered, including in-
stances where long-term trends are of interest. While the models 
from this work generally performed higher than past efforts, it is 
not clear that they are repeatable in different contexts, including 
other seasons as the measurements were conducted solely during 
the dry season.

We opted to use our resources for conducting a relatively com-
prehensive set of measurements on potential predictors, which 
resulted in somewhat small sample sizes. This trade-off seemed 
appropriate given our goal of exploring new modeling approaches 
for their potential utility; however, the smaller sample sizes limited 
our power to evaluate with more certainty which predictors and ap-
proaches were strongest.

F I G U R E  3  The relationship between predicted and measured 
personal exposure to PM2.5. The dotted line is a 1:1 line; dots 
represent individual data points; the blue line is a linear model 
including terms for personal, living room, and kitchen CO 
levels; kitchen volume and ventilation; and an estimate of PM 
concentrations derived from a microenvironmental location 
monitoring system

TA B L E  6  Literature KEF exposure prediction performance and fit statistics in comparison with personal PM2.5 exposure measurements

Model R2 RMSE (μg/m3) Mean (μg/m3) SD (μg/m3) p

1 Global Burden of Disease KEF 
(0.742)6

0.21 500 365 500 0.003

2 Shupler et al.5 (stove-specific)a  0.22 200 160 220 0.56

3 Shupler et al.5 (0.327) 0.22 200 153 224 0.72

a0.327 for charcoal and biomass stoves; and 0.133 for LPG stoves. 
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Although the sample sizes were relatively small, data manage-
ment for this study still presented a substantial challenge given the 
number and types of measurements involved and could likewise be 
problematic if several data streams are required for various model 

inputs. Finding the right balance in terms of expected predictive 
ability and data collection cost and analysis complexity is difficult, 
and likely will differ with the technical capacity of the group con-
ducting the work. Of course, as improved methods and equipment 

F I G U R E  4  Distribution of the kitchen exposure factors (KEF)—the ratio of personal exposure to kitchen concentration—in the current 
study. A KEF <1 indicates that personal exposure is less than kitchen concentration, while KEF ≥1 indicates that personal exposures exceed 
kitchen concentrations. In the current study, mean LPG user KEFs were greater than 1, indicating their exposure may be derived outside of 
the kitchen

F I G U R E  5  Changes in the error of prediction using KEFs based on measurements from varying numbers of households. The x-axis is the 
number of samples randomly selected from the total stove-specific set of measured KEFs. Random samples of each size were drawn ten 
times. The y-axis is the mean RMSE of the average of these samples of various sizes. Error bars are the average plus and minus the SD across 
the ten sets of random sampling. The line is a linear model (RMSE ~N of Samples); the shaded area is the standard error. Note that there 
were only five households with a primary charcoal stove
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continue to reach a wider audience, future analyses can become 
more streamlined.

It should be noted that any use of these types of models must be 
considered exploratory unless model validation is performed. There 
are many idiosyncrasies related to specific contexts that can affect 
predictive models, such as the intensity of neighbors cooking with 

dirty fuels, community-level use of polluting fuels, ambient air pollu-
tion, temperature, and housing characteristics. In this study, the low 
housing density and low ambient air pollution levels (Table S3) pro-
vided relatively low variability in environmental conditions, allowing 
the majority of air pollution exposure to be assumed as a result of 
cooking. Variability of other parameters, grouped by primary stove 

F I G U R E  6  Measured vs predicted output from cross-validated machine learning models. The “SuperLearner” panel is the ensemble, 
weighted model. The best performing models (as assessed by minimization of mean-squared error) were extreme gradient boosting 
(XGBoost), followed by generalized linear regression (Glmnet) and random forest. KSvm is support vector machines; Rpart is recursive 
partitioning and regression trees. The dotted line is the 1:1; the solid lines are linear models comparing measured and predicted exposures. 
Shaded areas are standard errors

TA B L E  7  Machine learning model performance and fit statistics

Model Adj R2 RMSE (μg/m3)

Overall (n = 50)

Mean (μg/m3) SD (μg/m3) p

1 XGBoost 0.57 98 139 121 0.98

2 Random Forest 0.50 107 139 89 0.99

3 Glmnet 0.32 126 153 111 0.60

4 Ksvm 0.40 123 117 59 0.34

5 Rpart 0.23 134 139 104 0.99

6 SuperLearner (ensemble) 0.50 105 138 101 0.99

Measured 139 151
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type, is presented in Table  S7. Thus, fuel type indicators may not 
perform as strongly in other contexts.

4.3  |  Recommendations

We recommend testing these models in different geographies or fuel 
use scenarios as they were developed from a single study commu-
nity. Continuing to build and test HAP exposure models in different 
contexts (cooking fuels, geographies, stove use patterns, housing 
characteristics) would enable more robust evaluation of how they 
can be extended to other contexts. For clean cooking standards, ad-
ditional characterization of the single-zone model's bias (more re-
gions, fuel types, housing types, etc.) would help support potential 
modifications to the model's application for deriving performance 
targets. Future modeling efforts would also benefit from machine 
learning approaches, including both supervised and unsupervised 
methods. These approaches, including those presented here, have 
shown some promise in generating reasonable predictive power, 
especially when combined with traditional statistical modeling ap-
proaches.53 De-aggregated real-time data may enhance machine 
learning predictive power, by identifying data features that may be 
predictive of mean PM2.5 exposures. We also recommend explora-
tion of additional predictors that may be relevant for exposure pre-
diction and considering inclusion of the single-zone model-based 
exposure estimates in machine learning models as predictors.
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