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H I G H L I G H T S  

• Single 24-h PM2.5 measurements do not predict longer-term averages well. 
• > 48 h sampling duration substantially reduced measurement variation. 
• Repeated short-term measurements led to better prediction of long-term mean.  
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A B S T R A C T   

Household air pollution resulting from solid fuel combustion is a leading cause of global morbidity and mortality. 
Strategies to measure area concentrations of and exposures to PM2.5 in rural homes focus primarily on short-term 
measurements, often of 24 or 48 h. Little is known about how well these short-term measurements, commonly 
used exposure metrics in health risk assessment of the impacts of household air pollution exposure, predict 
longer-term averages. In San Lorenzo District, Guatemala, we deployed the relatively low-cost University of 
California, Berkeley (UCB) Particle and Temperature Sensor (PATS) for 120–333 days in the kitchens of 8 homes 
using biomass fuels. We evaluated how well short-term measurements predicted the household-level, entire- 
sample average. A single 24-h measurement had between a 32% and 39% chance of being within ±25% of the 
household-level mean of all measurements. The Root Mean Square Error (RMSE) of a single 24-h measurement 
was on average 4.5 times higher than that of the mean of measurements taken once per study week. Alternate 
strategies – including sampling once per study week or once per study month – with this class of lower-cost 
sensors yield estimates which have a higher probability of being closer to the overall average value and have 
smaller errors relative to the overall mean. Evaluation of how well short-term measures predict longer-term 
averages of household air pollution at prospective study sites allows optimization of field resources to better 
estimate indoor concentrations and personal exposures.   

1. Introduction 

Nearly half of the world’s population (about 3.8 billion people) are 
exposed to household air pollution (HAP) from burning solid fuels – 
including wood, dung, grass, coal, and crop residues – for cooking, 
heating, and other household energy needs (Health Effects Institute, 
2020). The Global Burden of Disease (GBD) estimated that, in 2019, HAP 
resulting from the combustion of solid fuels for cooking was responsible 
for 2.31 million premature deaths, accounting for ~3.6% (91.5 million) 

of global disability-adjusted life years (DALYs) (Health Effects Institute, 
2020; Murray et al., 2020). Most evidence of these health effects is from 
studies using either measured or modeled surrogates of individuals’ 
typical or longer-term (months to years) exposures, often based on 
survey-assessed fuel type or measured kitchen particulate 
concentrations. 

Measures of particulate matter with an aerodynamic diameter of less 
than 2.5 μm (PM2.5) are central to cookstove intervention program 
evaluations (Balakrishnan et al., 2004; Balakrishnan and Smith, 2013; 

* Corresponding author. 2121 Berkeley Way West, Division of Environmental Health Sciences, University of California, Berkeley, CA, 94720, United States. 
E-mail address: ajayp@berkeley.edu (A. Pillarisetti).  

Contents lists available at ScienceDirect 

Atmospheric Environment 

journal homepage: www.elsevier.com/locate/atmosenv 

https://doi.org/10.1016/j.atmosenv.2022.119533 
Received 12 July 2022; Received in revised form 4 December 2022; Accepted 6 December 2022   

mailto:ajayp@berkeley.edu
www.sciencedirect.com/science/journal/13522310
https://www.elsevier.com/locate/atmosenv
https://doi.org/10.1016/j.atmosenv.2022.119533
https://doi.org/10.1016/j.atmosenv.2022.119533
https://doi.org/10.1016/j.atmosenv.2022.119533
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Atmospheric Environment 295 (2023) 119533

2

Chengappa et al., 2007; Dutta et al., 2007; Masera et al., 2007; Smith 
et al., 2007; Chen et al., 2016; Pilishvili et al., 2016) and global health 
assessments (Apte and Salvi, 2016; Lee et al., 2020) related to solid fuel 
use. Many of these studies use sampling durations of either 24 h 
(Balakrishnan et al., 2004; Baumgartner et al., 2011; Chowdhury et al., 
2012; Sambandam et al., 2015; Sidhu et al., 2017; Ye et al., 2020) or 48 
h (Alnes et al., 2014; Chengappa et al., 2007; Dutta et al., 2007; Masera 
et al., 2007), sometimes repeated seasonally (Baumgartner et al., 2011, 
2018; Li et al., 2019), which we refer to here as short-term measures. 
Little work has characterized how well these short-term measures pre-
dict longer-term concentrations or exposures. Use of short-term mea-
surements introduces classical measurement error in exposure, which 
attenuates estimates of the true exposure-response relationship. 
Lengthening the duration and/or frequency of measurements is a po-
tential solution to this problem, but brings additional equipment and 
personnel costs, increases field-worker burden, and lengthens study 
procedures in homes, impacting participants. 

As an ancillary study of the RESPIRE (Randomized Exposure Study of 
Pollution Indoors and Respiratory Effects) randomized control trial 
(Smith et al., 2010, 2011), which evaluated the impact of reduced 
exposure to wood smoke on childhood acute lower respiratory in-
fections, we opportunistically placed particle monitors in homes with 
and without intervention chimney stoves (Fig. 1) and monitored daily 
PM2.5 concentrations for, on average, 200 days per home. The current 
study seeks to 1) determine how accurately a single 24- or 48-h mea-
surement predicts household-level study duration average concentra-
tions; and 2) quantify gains in precision from alternate sampling 
strategies – including increased measurement duration over consecutive 
days and repeated 24- and 48-h sampling over time. 

2. Materials and methods 

Study location and population. Measurements were made between 
February 2004 and March 2005 in 8 households located in the western 
highlands of Guatemala (altitude 2200–3300 m). The region has a 
temperate and consistent climate (Supporting Information, Fig. S1) with 
three seasons: dry and cold (November through February), dry and 
warm (mid-February through April), and rainy and warm (May through 
October). The selected households in this ancillary study were a con-
venience sample of RESPIRE control and intervention homes, chosen in 
part based on location and proximity to study headquarters. Control 
homes cooked with a traditional open fire (n = 4); intervention homes 
had a chimney stove known locally as the Plancha (n = 4). All partici-
pants had relatively similar household characteristics and used wood as 
their primary cooking fuel. Key exposure-related characteristics of these 
households at baseline are summarized. RESPIRE project details – 
including human subjects approvals, consent, survey details, recruit-
ment procedures, and information about the intervention, were reported 
previously (Smith et al., 2011). 

PM2.5 Measurements. Continuous PM measurements were made 
using the University of California, Berkeley Particle and Temperature 

Sensor (UCB-PATS, Berkeley Air Monitoring Group, USA) following 
standard protocols (Chowdhury et al., 2007; Smith et al., 2007). The 
UCB-PATS is a data-logging, battery-powered optical particle monitor 
created using custom microelectronics coupled with commercial smoke 
alarm sensing technology. Previous field validation tests have shown 
that UCB-PATS relates well to gravimetric PM2.5 estimates in laboratory 
settings and in rural biomass-using households (Chowdhury et al., 
2007); the monitor has been widely deployed for household air pollution 
assessments around the world (Smith, 2014). The device is powered by a 
9V battery and logs photoelectric responses every minute. A total of 48 
unique UCB-PATS were rotated through households during this study. 
All monitors were assigned the same temperature and particle co-
efficients used to convert raw photoelectric responses into particle 
concentrations in micrograms per cubic meter (μg/m3). Masses reported 
by the UCB-PATS were adjusted to a pooled PM2.5 gravimetric correc-
tion factor determined during a previous study (Chowdhury et al., 2007) 
amongst wood-burning households in Guatemala. Briefly, UCB-PATS 
were collocated with 20% duty cycle gravimetric samplers (SKC 
224-PCXR8 pumps connected to BGI Triple Cyclones at a flow rate of 1.5 
lpm) for 48 h in RESPIRE study households as part of field validation 
activities for the UCB-PATS. 50 collocated samples were collected in 
open fire homes and 49 were collected in chimney stove homes. Cor-
relations were high (~0.89 between gravimetric samplers and 
UCB-PATS; 0.94 between duplicate UCB-PATS). Unadjusted values and 
gravimetric correction factors are reported in Supporting Information 
Table S1. 

All UCB-PATS were zeroed in a resealable plastic bag for 30 min 
before and after deployment in the households. Monitors were placed at 
a height of 1.5 m from the floor of the kitchen and from windows and 
doors and 1 m from the combustion zone of the primary stove to 
approximate the breathing zone of cooks. Each monitor was placed in 
participating homes and run for a week. We used midnight to midnight 
as starting and ending points of a sampling day. Fieldworkers visited 
these homes weekly to swap monitors. Monitors that were removed from 
homes were transported to the field headquarters, where data were 
downloaded, and routine monitor maintenance and cleaning was per-
formed. Logs of household visits and monitor performance were 
maintained. 

The daily mean concentration was calculated for each household on 
days with less than 10% of data missing. Additionally, because we are 
interested in predicting longer-term daily averages, we excluded periods 
associated with unusual events. In one household, kitchen renovation 
began in January of 2005; all measurements in this home after Dec 31, 
2004, were excluded. At the end of RESPIRE, all control households 
received the chimney stove; measurements in these four homes after 
introduction of the intervention were excluded. Finally, one extreme 
value was excluded, during which the mean concentration exceeded the 
next highest day by greater than 2-fold. 

We used non-parametric Wilcoxon rank sum tests to evaluate dif-
ferences in PM concentrations on weekdays versus weekends and by 
season. We used mixed models to evaluate whether the use of different 

Fig. 1. The left image depicts the Plancha chimney intervention stove in San Lorenzo, Guatemala. Fuel is fed into an enclosed combustion chamber (not visible); 
smoke vents out through a chimney (near the rear of the stove). The right image depicts a typical open fire cookstove. 
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monitors impacted PM concentrations (regressing log-transformed 
PM2.5 against a random effect for monitor ID) and estimated the intra- 
class correlation coefficient (ICC) from these models (the proportion 
of variability explained by monitor ID). 

Quantifying the coefficient of variation (COV) with increasing 
measurement durations. We calculated the reduction in the coefficient 
of variation (the standard deviation divided by the mean) for consecu-
tive days of measurement (Cynthia et al., 2008). We selected 10 random 
days as starting points from the complete pool of valid measurement 
days and estimated the COV for sampling periods of 1, 2, 3, 4, 5, 6, 7, 14, 
21, and 28 days from the starting point. To ensure stable estimates, this 
process was repeated 1000 times; the average COV is reported. 

Evaluating sampling strategies. To evaluate how well measures of 
various lengths predicted the longer-term household mean concentra-
tion, we calculated the mean of every possible set of consecutive days of 
measurements (of 1, 2, 3, 4, 7, 14, 21, and 28 days), the mean of a single 
24-h measurement drawn once per study week and once per study 
month, and the mean of 48-h samples drawn once per season. For each 
set of measurements of varying length, we determined how many esti-
mates fall within a given precision level – for instance, within 20% of the 
longer-term household mean concentration – and divided by the total 
number of estimates, yielding the probability (%) of a random mea-
surement of a specific duration falling within a given range around the 
longer-term mean. Calculations were performed separately by house-
hold and are presented in aggregate by stove type. We additionally 
calculated the root mean square error (RMSE) and its standard deviation 
for each measure described above. 

Explaining variability in PM2.5 concentrations with mixed 
models. We used linear mixed effects models to partition within and 
between household variances. The base model took the following form: 

Yij = β0 + bi + eij (1)  

where Yij is the jth concentration in household i, β0 is the overall 
intercept, bi is the random effect for household i, and eij is the leftover 
error. By comparing the base model with models of increasing 
complexity, we estimated how much variability in daily average PM2.5 
concentrations could be explained 1) by fixed, household-level charac-
teristics, such as stove type, socioeconomic indicators, and home char-
acteristics; and 2) by time-varying effects, such as day of week and 
season (McCracken et al., 2009). Covariates included in the models were 
based on previous literature and data availability. We additionally 
evaluated the autocorrelation between consecutive measurement days. 
All statistical analyses were performed in R 3.1 and 4.0 (R Foundation 
for Statistical Computing, Vienna, Austria). 

Fieldworker time and cost. We evaluated the financial and person- 
time impact of the various sampling strategies described above. We re-
ported costs of alternative sampling strategies in monetary value and 
percentage increase compared to a single 24-h measurement. Time re-
quirements were estimated based on the field manager’s experience 
with the particle monitors. Cost data was derived from study budgets. 

Field workers were paid 65 Guatemalan Quetzals per day (approxi-
mately 8.45 USD in 2004–05 at the midpoint of the study) for 8 h of 
work, which was above the minimum wage at that time. A single 
monitor deployment – including launching and zeroing the device in the 
lab before and after sampling and traveling to and from participating 
households but excluding data download – required approximately 2 h 
of fieldworker time during this study. The data download time was 
estimated at 5 min per sampled day. For deployments greater than 1 
week, we assumed fieldworkers would have to visit homes once per 
week to maintain the monitors, requiring approximately 1 h. We 
assumed that a deployment for a 24-h period took 2.08 h and cost 2.2 
USD in 2004–05. 

3. Results 

PM2.5 Measurements. Baseline characteristics of the 8 participating 
households are presented in Table 1. Approximately 2.4 million data 
points were recorded during 1634 valid measurement days. The number 
of days measured per home ranged from 120 to 333 days. The mean (sd) 
of daily concentration was 1903 (1335) μg/m3 in open fire homes and 
125 (133) μg/m3 in chimney stove homes. Summary statistics by 
household are described in Table 2; time series plots by stove-type and 
household are presented in Fig. 2. Both the summary statistics in Table 2 
and graphs in Fig. 2 indicate variability both within and between 
households in each group. Correlation between consecutive days of 
measurement is shown by household in Supplemental Fig. S2 and in 
aggregate in Fig. S3. 

There was no significant difference in distributions of PM2.5 con-
centrations on weekends and weekdays for either open fire or chimney 
stove homes (SI figure S6). Similarly, there was no significant seasonal 
difference for open fire homes; for chimney stove homes, the Warm and 
Dry season was significantly different from the Warm and Wet season, 
with a mean increase of 40 μg/m3 in the warm, wet season. The pro-
portion of variability explained by unique monitor ID, estimated using 
the intraclass correlation coefficient, was low (~0.170), indicating that 
monitor alone likely did not explain differences noted within and be-
tween households. 

Coefficient of Variation (COV). Fig. 3 displays the change in the 
coefficient of variation associated with longer consecutive measurement 
days. Most of the reduction in COV occurs by increasing the measure-
ment duration up to 1 week; additional reductions continue to occur, but 
the rate of reduction decreases. 

Evaluating Sampling Strategies. Comparisons of the precision of 
samples of varying durations are displayed graphically in Fig. 4 for both 
open fires and chimney stoves. Approximately 32% of chimney and 39% 
of open fire 24-h samples are within 25% of the longer-term mean. 
Increasing the consecutive days of measurement led to increases in 
precision for both stove types. The magnitude of the increase varied; 
open fire homes saw greater increases in precision for an equivalent 
increase in sampling length. 

Table 3 depicts the probability of falling within 50%, 25%, and 10% 
of the longer-term mean for each of the sampling strategies. Probabili-
ties increase with increasing consecutive days of measurement; sam-
pling once per study week (on average 20 times per household in the 
current study) or once per study month (on average 6 times per 
household in this study) greatly improve the probability of attaining 
precision goals, as does selecting 48-h samples randomly once per sea-
son. Under all scenarios, samples are less likely to fall within precision 
goals for the chimney stoves. 

The RMSE for each sampling strategy is displayed in Fig. 5 and 
described in Table S2. Samples composed of a smaller number of days 
have more dispersed RMSEs, as indicated by the error bars representing 
one standard deviation above and below the central estimates. The 
RMSEs ranged from 27 to 110 μg/m3 for chimney stoves (20–85% of the 
overall chimney stove mean) and 168–1000 μg/m3 for open fires 
(10–50% of the overall open fire mean). For both stove types, the largest 
RMSE was for a single sampling day, while the smallest was for the mean 
of random days selected from each study week. 

Explaining concentration variability. Mixed models evaluated 
during this analysis are shown in Table 4. Model (A) is the simplest 
model, containing no covariates; model (D) is the most complex, con-
taining both time invariant covariates (i.e., an asset index, roof type, 
wall type, and kitchen volume) and time-varying covariates (i.e., daily 
average humidity, day of week, and season). A variable for stove type 
explained the majority of the between household variability; addition of 
other time invariant and time-varying variables explained little or no 
additional variability, consistent with previous modeling work in this 
community in Guatemala (McCracken et al., 2009). An additional model 
(not shown) containing a random intercept term for UCB monitor ID 
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explained only approximately 3% of the within household variability 
relative to the base model. Models were fit with both a fourth order 
autoregressive correlation structure given the autocorrelation observed 
between mean concentrations over consecutive days in the data (Sup-
porting Information Figs. S2 and S3) and with a compound symmetry 
correlation structure, with no substantive difference in model output. 

Fieldworker time and cost. Table 5 includes cost estimates of each 
sampling strategy per household. Costs were driven by fieldworker time, 
including transportation and time in households. Sampling for 

consecutive days – which requires, in theory, less fieldworker inter-
vention – was less expensive than strategies that required multiple visits 
to households. 

4. Discussion 

We report and analyze a dataset of low-cost, light-scattering based 
repeated measurements of PM2.5 concentrations in households using 
solid fuels for cooking. By deploying real-time monitors routinely for an 

Table 1 
Baseline characteristics of the 8 RESPIRE households in current analysis.   

Open Fire 1 Open Fire 2 Open Fire 3 Open Fire 4 Chimney Stove 
1 

Chimney Stove 
2 

Chimney Stove 
3 

Chimney Stove 
4 

Dirt floor in main home Y Y Y Y Y Y Y Y 
Electricity in main home Y Y N Y Y Y Y Y 
Roof Type         

Straw Y Y Y Y  Y Y  
Aluminum     Y   Y 

Number of rooms in house 1 1 1 1 1 1 1 1 
Number of people in house 8 4 5 7 6 10 7 13 
Cooking area in separate closed 

room 
Y N Y Y Y Y Y Y 

Leaks in roof N N N N N N N Y 
Kitchen volume (m2) 22.7 60.5 11.7 54.1 17.2 89.2 43 63 
Kitchen eave spaces         

Completely closed     Y Y   
Partly closed   Y     Y 
Completely open Y Y  Y   Y  

Stove in same room as bed N Y N N N N N N 
Smoker present in home N N N N N N Y N 
Has temazcal wood-fired sauna bath Y Y Y Y Y Y Y Y 

*Y: yes; N: no. 

Table 2 
Study-wide mean PM2.5 concentrations in μg/m3 by household and stove type.   

N Mean SD Min Median Max Start Date End Date 

Open Fire 1 136 2255 1068 528 2076 5987 7/7/04 12/13/04 
Open Fire 2 134 1118 592 102 981 2903 7/7/04 12/12/04 
Open Fire 3 120 923 494 194 863 3135 2/17/04 7/16/04 
Open Fire 4 215 2717 1514 53 2476 9017 2/24/04 11/22/04 
All Open Fire 605 1903 1335 53 1557 9017  
Chimney Stove 1 154 143 119 39 115 1077 7/7/04 12/31/04 
Chimney Stove 2 215 147 138 41 98 1342 7/7/04 3/21/05 
Chimney Stove 3 333 54 77 31 41 1122 2/17/04 3/21/05 
Chimney Stove 4 327 175 149 43 128 975 2/17/04 3/21/05 
All Chimney Stove 1029 125 133 31 84 1342   

Fig. 2. Daily mean PM2.5 concentrations in μg/m3. The top panel displays data from intervention homes. The lower panel displays data from open fire homes. The 
dotted lines are the study-wide means by stove type. 
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extended period of time, we were able (1) to describe the variability in 
PM2.5 concentrations in rural Guatemalan homes using either an open- 
fire or a chimney stove, (2) to estimate how well traditionally per-
formed short-term measures predict longer-term averages, and (3) to 
suggest alternative sampling approaches to better predict the longer- 
term mean. The sampling period allowed us to characterize 24- or 48- 
h measurements from midnight to midnight, which minimized the risk 
of capturing incomplete or inaccurate cooking episodes introduced by 
the timing of monitor placement (e.g., mid-day to mid-day) often seen in 
short-term measurements. 

The convenience-based sample size of four households each in the 
traditional and intervention stove groups restricts the range of statistical 
modeling that can be applied and limits the inference derivable from this 
dataset. Descriptive analyses (Supporting Information, Figs. S4, S5, and 

S6) and distributional statistical tests indicate small differences of PM2.5 
concentrations for each stove type by season and day of the week. This is 
consistent with previous findings (McCracken et al., 2009; Ruiz-Mer-
cado et al., 2013), which observed stable personal exposures to carbon 
monoxide throughout the year for this population. We expect more 
seasonal variability in kitchen PM2.5 in regions with more varied seasons 
and different cooking and heating patterns. However, we could not rule 
out the possibility that the seasonality was not well captured in current 
analysis, given the small sample size. Similar analysis to the one re-
ported here, albeit with larger sample sizes, should be repeated in other 
contexts to discover if a strategy that samples once for 24 h per study 
week or study month or once for 48 h per season could also produce 
better estimates of longer-term average concentrations, as reported 
here. 

Fig. 3. The reduction in the coefficient of variation with increasing consecutive days of measurement. COVs are reported above for each measurement period of 1, 2, 
3, 4, 5, 6, 7, 14, 21, and 28 consecutive days were evaluated. 

Fig. 4. Changes in precision given sampling intervals of different lengths. The x-axis represents the deviation from the longer-term mean; the y-axis is the probability 
of obtaining a measurement at a specific percent deviation from the longer-term mean. The top panels are for consecutively sampled days; the lower panels are for 
randomly selected sampling days. The stove type is specified in the panel title. 
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Table 3 
Probability of being within 10, 25, and 50% of the longer-term, household-specific study mean by stove type and sampling strategy.  

Precision Level 50% (least stringent) 25% 10% (most stringent) 

Sample Days in sample Open Fire Chimney Open Fire Chimney Open Fire Chimney 

Randomly selected days Probability 
1 day 1 69% 70% 39% 32% 18% 13% 
1 day per study month 6 99% 95% 81% 68% 44% 27% 
1 day per study week 20 100% 100% 98% 66% 74% 34% 
48-h period per season 6a 97% 88% 72% 61% 33% 26% 
Random consecutive days Probability 
2 days 2 81% 75% 48% 34% 17% 13% 
3 days 3 85% 80% 53% 38% 19% 12% 
4 days 4 89% 82% 56% 41% 24% 14% 
7 days 7 96% 82% 64% 48% 24% 14% 
14 days 14 99% 82% 79% 54% 36% 13% 
21 days 21 100% 93% 88% 52% 47% 17% 
28 days 28 100% 98% 98% 62% 51% 16%  

a This strategy, while comprised of 6 days of measurements, requires three 48-h deployments. 

Fig. 5. Root mean square error (RMSE) comparing various sampling strategies to the longer-term mean. The x-axis is the RMSE; the y-axis is each sampling strategy. 
Dots indicate mean RMSE and error bars indicate one standard deviation. The top panel is for chimney stoves; the lower panel is for open fires. On average, sampling 
once per study week and once per study month resulted in 20 and 6 days of measurement in this study. 

A. Pillarisetti et al.                                                                                                                                                                                                                              



Atmospheric Environment 295 (2023) 119533

7

Coefficient of Variation. A study in the central highlands state of 
Michoacán, Mexico (Cynthia et al., 2008), found that the COV was 
reduced from 0.68 for a single, 24-h measure to 0.48 when the sampling 
duration was increased to 96 h. The majority of the reduction in COV 
occurred by increasing the duration of sampling to 48 h. Our findings 
were similar; the COV was reduced from 0.96 to 0.78 for chimney stove 
homes and from 0.71 to 0.61 for open fire homes during the first 48 h. By 
96 h, the COV in our study reduced to 0.68 and to 0.57 for chimney and 
open fire homes, respectively. In both Mexico and the current study, the 
COV decreased by 29% over the first four days. Fig. 3 indicates that the 
COV begins to stabilize at monitoring durations of approximately 1 
week. The higher COV in chimney-stove homes may indicate occasional 
open fire use, a phenomenon known as stove stacking,21,22 the 
well-documented practice of using multiple stoves in a home. In areas 
where several stoves are used, it is likely that estimation of longer-term 
concentrations using a single 24-h measure will be imprecise. 

Sampling strategies. Short-term measurements such as 24-h or 48-h 
concentrations had a low probability of closely estimating the longer- 
term mean. Increasing the measurement duration to greater than 7 
days increased the probability of falling within 25% of the longer-term 
mean and reduced the RMSE. Alternate sampling strategies – that 

focus on sampling once per study week or once per study month – 
improved the probability of falling within any given deviation from the 
longer-term mean and also reduced the RMSE. However, these strategies 
require additional resources and incur added costs and impositions on 
participating households. Increasing the measurement duration to 48 h 
and sampling three times offers a compromise between error and the 
burden imposed on households and on fieldworkers by extra measure-
ment visits. The larger error across strategies in chimney stove house-
holds is presumably due to usage of the old stove or simultaneous use of 
both stoves, leading to less consistent concentrations when a small 
number of days are selected from the complete set of available days at 
random. 

Work in context. Limited previous work repeatedly estimated 
household air pollution concentrations in the same household over 
many days. In Mexico, during an assessment of the Patsari cookstove, 
PM2.5 kitchen concentrations were monitored for 4 days in 24 homes 
(Cynthia et al., 2008). Researchers observed that variability decreased 
as the number of sampling days increased; however, they were unable to 
compare this to a longer-term mean, such as an annual average con-
centration. In Guatemala, researchers compared single 48-h personal 
carbon monoxide (CO) measurements to the longer-term mean of 4 
repeated measures. They found that the single measures were unreliable 
as a measure of longer-term exposure (McCracken et al., 2009). Lee et al. 
(2021) conducted a panel study among 787 Chinese adults with up to 4 
days of repeated measures of PM2.5 and black carbon (BC) and found 
that within-individual variances were much larger than 
between-individual variances. Their finding indicated that repeated 
measurements of daily exposure are likely needed to capture 
longer-term exposures, even within a single season (Lee et al., 2021). 
Similar findings of repeated personal exposure were also observed 
among women during their pregnancy by an ongoing muti-country 
randomized controlled trial (RCT) (Johnson et al., 2021). More 
recently, Keller and Clark (2022) examined different approaches to es-
timate long-term average HAP concentrations from repeated short-term 
measurements and demonstrated, based on measurements from a 
cookstove intervention in Honduras, that long-term average predictions 
using mixed models based on a small number of measurements can 
reduce prediction error, though with diminishing returns as the number 
of measurements increases. 

Limitations and future work. This analysis had a number of limi-
tations. First, the study had only 8 participating households, with some 
heterogeneity in household-level characteristics. The disadvantages of 
having only 4 households each in the chimney-stove and open-fire 
groups were partially alleviated by many repeated measures, though 
we note that a greater number of households would have aided modeling 
efforts. 

Local cooking and heating customs, fuel types, and household 

Table 4 
Mixed-model estimates of within- and between-household components of vari-
ance for 24-h mean PM2.5 concentrations.  

Model Within- 
household 
variance 

Between- 
household 
variance 

R2
within

a R2
between

b 

A Yij = β0 + bi +

eij 

0.324 1.589 – – 

B Yij = β0 +

β1stove+ bi + eij 

0.324 0.262 0 0.835 

C Yij = β0 +

β1stove+ β2Xi +

bi + eij 

0.324 0.173 0 0.891 

D Yij = β0 +

β1stove+ β2Xi +

β3Zij + bi + eij 

0.318 0.160 0.02 0.899 

E Yij = β0 +

β1stove+ β2Zij +

bi + eij 

0.318 0.261 0.01 0.836 

Model C and D contains the following time invariant variables X: an asset index, 
roof type, wall type, and kitchen volume. 
Model D and E contains time varying variables Z: day of week, daily average 
humidity, and season. 

a Within household variance explained by model relative to baseline model 
(A). 

b Between household variance explained by model relative to baseline model 
(A). 

Table 5 
Cost and fieldworker time commitment for various sampling strategies per household.  

Sample Sampling 
Days 

Fieldworker time 
(minutes) 

Data download time 
(minutes) 

Total Time 
(hours) 

Cost per home over sampling 
period ($)a 

% Cost increase compared to a single 
24-h measurement 

Randomly selected days  
1 day 1 120 5 2.1 2.2 – 
1 day per study 

month 
6 720 30 12.5 13.2 500% 

1 day per study 
week 

20 2400 100 41.7 44.0 1900% 

48-h period per 
season 

6 360 30 6.5 6.9 214% 

Random consecutive days  
2 days 2 120 10 2.2 2.3 5% 
7 days 7 120 35 2.6 2.7 23% 
14 days 14 205 70 4.6 4.9 123% 
21 days 21 330 105 7.3 7.7 250% 
28 days 28 435 140 9.6 10.1 359%  

a Cost per home was calculated as the total time (in hours) divided by 8 (the number of working hours per day) times the daily wage of 8.45 USD per day. 
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characteristics differ amongst solid fuel using households globally. 
Therefore, results from current analysis may be less generalizable to 
other settings. Replication in additional geographies will further help 
determine the best approaches for optimizing sampling strategies. 

Additionally, for many health outcomes associated with exposure to 
PM2.5 resulting from solid fuel use for cooking, there are exposure du-
rations of interest that are longer than the total duration measured for 
this study. For example, to understand effects of exposure on chronic 
obstructive pulmonary disease or cardiovascular disease, we would 
ideally measure exposure over decades. Although our study informs the 
viability of using short-term measure to predict annual means, it cannot 
address variability in exposures over these decadal timeframes. None-
theless, our findings may help inform future exposure assessment and 
risk assessment studies by better informing decisions about sampling 
duration and frequency. 

Data from the UCB monitors used during this study were not indi-
vidually gravimetrically adjusted, instead relying on pooled correction 
factors from previous work (Chowdhury et al., 2007). As a result, the 
coefficients used to convert raw millivoltage from the photodetector into 
PM mass may misestimate the true concentration; however, we expect 
the relative differences between monitors remained relatively constant, 
based on previous field validation results (Smith et al., 2014). Further-
more, we noted a low proportion of variability explained by monitor ID 
in the current study. Concentrations reported in Table 1 are thus likely 
indicative of variability within and between homes. 

The air pollution monitors used in this study are no longer commonly 
used and have been replaced by modern sensors, like the PATS+ (Ber-
keley Air Monitoring Group, Berkeley, CA), Enhanced Children’s 
MicroPEM (ECM, RTI International, Research Triangle Park, NC), and 
the Ultrasonic Personal Aerosol Sampler (UPAS; Access Sensor Tech-
nologies, Fort Collins, CO). These monitors, along with commercially 
available sensors based like the PurpleAir (PurpleAir, Inc., Draper, 
Utah), can provide more highly resolved data, though many saturate at 
levels lower than often experienced in village kitchens. Ongoing work, 
including some by the authorship team, seek to understand how these 
modern devices can perform for even longer periods of time in similar 
settings where solid fuel use is prevalent. 

We were unable to measure several factors that may impact kitchen 
PM2.5 concentrations, including ventilation, use of multiple stoves, 
meteorological parameters near households, changes in household 
configuration, or changes in the number of people per household. Ad-
vances in the ability to monitor stove usage using small, data-logging 
thermometers (Stove Use Monitors – SUMs) have enabled better un-
derstanding of the variability of PM2.5 concentrations within home, 
especially in homes where multiple stoves are being used. In instances 
where stove use is not correlated with concentrations and exposures, 
additional unmeasured sources should be considered. Similarly, any 
future studies of longer-term pollutant concentrations in biomass 
burning households should capture information – such as behavioral 
changes due to life course events, like pregnancy or delivery or changes 
in household structure – that may help explain the variability within and 
between households. These types of changes, which were not measured 
for this analysis, may be important for analyses looking at specific 
maternal and child health outcomes, and should be collected in addition 
to routinely collected information, including the number of household 
members in a home, special cooking done during monitoring periods, 
changes in fuel source, and stove-fuel-food combinations that may 
change with season. 

Our simple estimate of program costs does not take into account 
monitor availability or pricing. Up front equipment costs can be high; 
the availability of monitors to perform measurements of concentration 
or exposure depend on program resources and vary widely. Addition-
ally, our cost estimates may slightly underestimate the per sample 
fieldworker cost; although presumably, during long-data download 
sessions, field staff could perform other tasks, the poorer infrastructure, 
unforeseeable weather events, resources for keeping the field team for 

an extended period, and many other factors could all lead to higher per- 
sample costs. However, advances in monitoring technology should 
dramatically drive down the time required to download data and 
manage devices. 

Under ideal circumstances, health researchers would measure per-
sonal exposure repeatedly in place of measuring kitchen concentrations 
as done in this study. During data collection for the current study, such 
ongoing monitoring was not possible due to the project cost and 
participant burden of personal exposure assessment. Optimizing the 
duration of sampling for exposure assessments is not straightforward, 
however. We reviewed published exposure measurements (Supporting 
Information Tables S3 and S4) and extracted the mean and standard 
deviation of exposures to estimate COVs, which varied widely depend-
ing on locale and pollutant measured. For PM2.5 exposure measurements 
at our field site in Guatemala, the estimated COVs were 1.13 for open 
fires and 1.27 for chimney stoves (McCracken et al., 2007) – higher than 
the COV for a single kitchen measurement reported here (0.71 and 0.96 
for open fires and chimney stoves, respectively). Contrastingly, in a 
Honduran community using a mixture of stoves, the COV from personal 
exposures to PM2.5 was lower than that of kitchen concentrations (0.9 
and 1.4, respectively) (Clark et al., 2010). In a Ghanaian community 
using primarily open fires, personal measurements also had a lower COV 
than kitchen measurements (0.61 and 0.92, respectively) (Van Vliet 
et al., 2013). This variability may be related to cooking styles and 
practices, difference among roles of household members, and other 
behavioral factors as well as structural differences in household envi-
ronments, and indicates the need for more evaluation of personal 
exposure measurement duration. 

As part of pilot work for future large-scale studies, investigators may 
wish to consider small, targeted longer-term monitoring studies along 
the lines of what we report here, which could leverage recent advances 
in particle monitors to potentially require less frequent field visits than 
the one-week interval we employed. These could better quantify expo-
sure variability in different situations by monitoring household and in-
dividuals for a number of consecutive days. Such studies could greatly 
increase the efficiency of the sampling strategy employed in the study 
being planned whether to conduct exposure-response analysis of health 
outcomes or to assess the pollution impacts of interventions as well as 
help decide more mundane, but important, questions such as whether 
monitoring on weekends is needed. 

The choice of sampling strategy is motivated by a number of 
competing factors, including logistical issues, such as the study budget, 
the cost of monitoring equipment, the availability of study staff, and the 
burden on participants; and analytical issues, such as whether the 
question of interest involves group-level estimates, which are unbiased 
and relatively constant, regardless of monitoring duration; or individual 
estimates of exposure, which are imprecise when estimated from short- 
term measurements of pollutant concentration. Many studies of house-
hold air pollution focus on a few measurements of either 24 or 48 h. Our 
findings suggest that if short measurement durations are used to link air 
pollutant concentrations and exposures to ill-health, the true effect size 
may be underestimated. Consecutive measurements for one week 
decrease the COV substantially relative to shorter measures; measure-
ments for longer than one week offer little marginal improvement in 
COV. Measurements spread throughout the year in this study’s context, 
however, are closer to the study-wide average and have smaller errors. 
Measurement durations (1) longer than 48 h or (2) consisting of 
repeated 24- or 48-h measurements throughout a study should be 
considered in future studies of household air pollution to more accu-
rately characterize variability and to better predict longer-term 
concentrations. 
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