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Heat exposure is a leading environmental risk factor, responsible
for an estimated 300,000–500,000 deaths annually.1,2 Despite a
rapid increase in our understanding of heat-related mortality and
morbidity over the past two decades,3,4 many studies have been
based on administrative data, which are often limited in their
details on specific causes of death/illness, on potential confounding
factors and effect modifiers, and on the context of the event itself.
As the world continues to warm5 and heat risks multiply,6 there is a
need to diversify scientific approaches used to study heat to a) bet-
ter identify who is most at risk, b) elucidate the biological mecha-
nisms underlying observed health effects, and c) develop evidence-
based policies to protect against high outdoor temperatures.

The study by Meade et al.7 in this issue of Environmental
Health Perspectives reports the results of a randomized crossover
trial of 16 older adults with the aim of providing evidence to inform
existing Canadian guidance on safe indoor temperatures. Their
investigations directly address a policy-relevant question—how
cool indoor environments should be—through innovative and rig-
orous physiological investigation, with their results supporting a
26°C upper temperature limit for residential buildings. As the
authors note, some noteworthy limitations exist around potential
generalizability to other geographies, climates, and populations, as
well as the prohibitive cost and expertise required to conduct such
intensive, laboratory-based studies on larger sample sizes.

Two natural questions, then, follow: a) how to generate similarly
useful information in other locations, including those that are
resource-constrained, and b) how to determine if laboratory-based
results can be applied to these and other settings. One optionmay be
to leverage existing studies that collect similar information for other
purposes. For example, cookstove intervention studies often moni-
tor temperature exposures while also collecting biospecimens and
cardiorespiratory data.8 However, studies employing the technolo-
gies used by Meade et al. to evaluate physiological temperature
(e.g., ingestible monitors, rectal thermocouple-based monitors,
skin-based thermistors) are rare and may not be feasible in the field
from the perspective of either acceptability or practicality.

Future work to identify easier, less invasive proxies to esti-
mate core temperature and other clinically meaningful metrics
would be valuable. These proxies may include lower-cost, local

meteorological stations or wearable monitors; if shown to be useful
for evaluating core temperature, they might be easier to deploy at
broader scales and during routine daily activities compared with the
intensive work undertaken byMeade et al. Comparison of measure-
ment types is warranted to understand the trade-offs between ease of
deployment andmeasurement accuracy and precision. Furthermore,
evaluations of the type performed by Meade et al., across more
diverse populations and climatic settings, could help provide a
framework for establishing context-specific indoor thermal toler-
ance limits. Replication in additional geographies could provide evi-
dence of whether such indoor temperature guidance should be the
same or different across diverse settings. Novel combinations of
environmental sensing, backed by a better understanding of heat
response physiology, could thus provide evidence-backed guidance
on indoor environmental standards and enable mechanisms to alert
populations at risk for heat stress in near real time.

Researchers will surely conduct studies along these lines in the
coming years. In the meantime, while we await local data, should
the Ottawa-based recommendations be adopted elsewhere? On the
one hand, Ottawa is a relatively cool, temperate climate, suggesting
that the study’s target indoor temperature of 26°C would likely be
protective in most places, given that the temperature at which heat
risk begins seems to be linked to a city’s prevailing climate.9,10 On
the other hand, implementing (potentially) conservative indoor tem-
peraturemandates may have ancillary consequences, such as effects
on household energy burdens, emissions from air conditioning, or
stress on the power grid. Aswith any policy, especially ones that can
affect large swaths of the population, balancing these types of con-
siderations is essential.

The article byMeade et al. not only challenges us tofind creative
ways to produce translational science related to heat exposure but
also implicitly reminds us that some of themost important questions
relevant to climate adaptation policies cannot be answered in the
laboratory. Although most people around the world are affected by
hot temperatures to some extent,2 vulnerability is highly heteroge-
neous and differs by many factors, including income, occupation,
health status, and age, to name just a few.11–13 The focus of Meade
et al. on a relatively homogenous group of healthy individuals ≥65
years of age is not an unreasonable population on which to base pol-
icy, because older adults are certainly among the vulnerable.11 But
other choices, such as including people who may be even more at
risk (e.g., the very young, those with certain illnesses, the very old),
would also be reasonable. In other words, studies like the one by
Meade et al. can provide needed information on how to protect
against heat but cannot decide who to protect; that is inmanyways a
muchmore difficult question to answer.
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