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Ecuador case study 

Data sources 

Here we list some parameters and data sources in more detail than in the main text.  

• Ecuador’s historical LPG sales volume and subsidies data come from multi-annual reports by 

PetroEcuador, the state petroleum company which, together with its predecessor entities, has held 

a monopoly on LPG importation and wholesaling throughout the period under study. Consumer 

prices can be found on p.170 and annual consumption can be found on p.102 of PetroEcuador 

report ‘40 years building the development of the country, 1972–2012.’ 

• Exchange rates between the US dollar and Sucre (Ecuador’s national currency until early 2000, 

when the country began using the US dollar as its official currency) were calculated using data 

downloaded from the Banco Central de Ecuador (here). Conversion factors were applied to 

convert Sucres into current-year US dollars, and to convert current-year dollars into May 2023 

dollars (Bureau of Labor Statistics here). 

• Ecuador’s historical GDP data come from the World Bank (available here). 

• The Central Bank also collects and publishes data from PetroEcuador, including quarterly 

statistics on annual LPG imports and sales, which were used to crosscheck and fill gaps in the 

data from PetroEcuador-published reports. 

• The cost of Ecuador’s LPG subsidy was determined by multiplying the country’s annual 

consumption by the difference between the subsidized consumer price and the international 

wholesaler and producer price (data from EIA and FRED producer price index; propane using 

Dec 2022 as index=100). 

 

This analysis makes several assumptions to bridge data gaps: first, domestic LPG production is 

treated as equivalent to imported fuel. Domestic production volume has been stagnant since the 

mid-1990s and has accounted for roughly one-fifth of overall consumption since 2000. As 

https://www.eppetroecuador.ec/wp-content/uploads/downloads/2015/03/40-A%C3%B1os-Construyendo-el-Desarrollo-del-Pa%C3%ADs.pdf
https://www.eppetroecuador.ec/wp-content/uploads/downloads/2015/03/40-A%C3%B1os-Construyendo-el-Desarrollo-del-Pa%C3%ADs.pdf
https://contenido.bce.fin.ec/documentos/MercadosInternacionales/Cotizaciones/tipoCambio.xls
https://www.bls.gov/data/inflation_calculator.htm
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=pet&s=ema_epllpa_pwg_nus_dpg&f=a
https://fred.stlouisfed.org/graph/?id=APROPANEMBTX
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domestic production has largely come under the aegis of PetroEcuador, we treat unrealized 

income (from the potential sale of this LPG at market prices) as equivalent to the cost of 

imported fuel. Second, our estimations conservatively treat all LPG sales within the country as 

fully subsidized. While household use of LPG represents most of the internal market (>90% over 

the last decade), a complex and evolving set of price points have been fixed for industrial, 

agricultural, and transportation uses of LPG. However, data gaps on LPG use in these sectors for 

the majority of the years under analysis prevent the inclusion of this detail. Finally, our use of 

average annual international wholesale prices and US prices received by LPG producers for the 

period prior to 2011 represents an imperfect estimate, and likely an underestimate, of the cost 

paid by Ecuador’s government for imported LPG, which must cover shipping and logistics costs, 

in addition to being subject to the volatility of the LPG market at the moment that import 

contracts are signed.  
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Modeling mortality and estimating its value, 1979-2019 

Our modeled estimates of the averted mortality from clean cooking fuel scale up in Ecuador 

rely on yearly nationwide observed % primary clean cooking fuel use, predicted % primary 

clean cooking fuel use absent the subsidy, all-cause all-age mortality rates, average PM2.5 

exposure estimates for those using clean cooking fuels primarily and those that are not, and an 

exposure-response function that translates those exposures into changes in all-age all-cause 

mortality risk. 

The observed trajectory is derived by linearly interpolating the percent primary clean 

cooking fuel use variable derived from Census years 1974, 1982, 1990, 2000, 2010, and a 

combined set of nationally-representative surveys conducted between 2015– 2019 (whose 

mean value we place at 2019). The 20 year delayed trajectory is calculated by starting at 6.55% 

in 1974 (no difference to observed), increasing to 9.91% in 1984 (the value Ecuador had 

reached in 1975), increasing to 26.71% by 1994 (1980), increasing to 39.57% in 2004 (1984), 

and maintaining the 20y delayed gap thereon. The 10y delayed trajectory is calculated by 

starting at 6.55% in 1974 (no difference to observed), increasing to 23.35% in 1984 (the value 

Ecuador had reached in 1979), increasing to 39.57% by 1994 (the value reached in 1984), and 

maintaining the 10y delayed gap thereon. 

Yearly nationwide data on population and mortality are derived from the United 

Nations World Population Prospects 2022 (available here). 

Exposure contrasts are derived from ref. (2) and are as follows: 50 µg/m3 (sd = 20 

µg/m3) polluting and 25 µg/m3 (10 µg/m3) clean. For each bootstrapped run, we draw from a 

truncated normal distribution where the mean and SD are as described above, the minimum is 5 

µgm3 for both polluting and clean fuels, and the maximum is 150 µgm3 for polluting and for 

https://population.un.org/wpp/Graphs/DemographicProfiles/Line/218
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clean fuels. The maximum was the randomly selected level for the polluting group, ensuring 

that the clean group had either the same exposure or lower. 

For the exposure-response relationship (for Ecuador, India, and Kenya), we applied the 

Global Exposure Mortality Model (GEMM).(3) The GEMM provides hazard functions derived 

from 41 cohort studies across 16 countries, including high PM2.5 contexts, and removes the 

use of secondhand smoking studies to cover these high concentrations and to provide an upper 

exposure bound. Our outcome of interest is nonaccidental mortality; we apply the 25 years and 

older category from the GEMM to our populations. The inputs are drawn from an excel file 

downloaded from the Supplemental Information from the paper describing the GEMM and its 

application (Burnett et al. (2018)). 

As noted elsewhere,(4, 5) the choice of exposure-response relationship can highly 

impact modeled estimates of air pollution attributable mortality, especially at high 

concentrations (by 2x, at times). In addition to its strengths noted above, we choose the GEMM 

because its parameters are publicly available and easily implemented.  

We select a preferred Value of a Statistical Life (VSL) of 820,000 USD from (6). Other 

values are possible, however: 400,000 USD in 2019 dollars (7) and 2.15 million USD in 2020 

dollars (8). For reference, in the US, The Department of Health and Human Services 

recommends using an $11.4 million VSL, The Department of Transportation recommends an 

$11.7 million VSL, and the Environmental Protection Agency recommends a $10.8 million 

VSL (US$2020).  
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Regression-based estimates of health benefits, 1990–2019 

As a complement to our theoretical analysis detailed above, we additionally conducted 

regression-based estimates of health benefits from 1990 to 2019. This analysis builds on previous 

work1 where we estimated the impact of LPG scale-up from 1990 to 2019 on under-5 lower 

respiratory infections mortality (but is unpublished elsewhere). In comparison to Gould et al. 

(2023)(9), our approach differs in a few respects. First, our outcome of interest is all-cause, all-

age mortality to more fully capture the potential benefits of clean fuel scale up. Second, to 

quantify uncertainties, we bootstrap 95% confidence intervals by sampling cantons with 

replacement. Third, we generate population averaged estimates by weighting canton-months 

according to their population in our regression. 

To model the relationship between all-cause mortality and clean fuel, we estimate the 

following regression: 

 log(ycy) = βPcy +λcy +µc +γy +θcy +εcy (1) 

using ordinary least squares, where c indexes cantons and y indexes year. ycy is the log of the 

yearly canton-level all-cause, all-age mortality rate and Pcm is the proportion of households 

primarily cooking with a clean-burning cooking fuel in the same canton-year. λcy is a vector of 

canton-year control variables, including the fraction of households that are classified as rural, the 

fraction of households that are grid electrified, a composite index of household building materials 

(roof, wall, floor) intended to serve as a proxy for infrastructure and wealth, toilet type intended 

to serve as a proxy for water, sanitation, and hygiene practices and wealth, the fraction of adult 

women that are literate, the fraction of girls under 18 years that are in school, the fraction of 

households where an individual speaks an indigenous language, and a composite index of under-

5 vaccination rates (for more details see ref. (9)). µc is a vector of canton fixed effects that 
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account for all locality-specific time-invariant characteristics correlated with either LPG scale up 

or mortality rates. To account for longer-term trends in LPG scale up and mortality rates, we 

include a vector of year fixed effects γm, which account for any time-trending differences in 

either LPG scale up or mortality rates that are common to all cantons. Regressions were weighted 

by canton population and standard errors were clustered at the canton level.  We find that all-

cause mortality rates decline by 0.41% (95% CI, -0.94% to 0.00%) with each additional 

percentage of households in a canton using a clean cooking fuel. 

One might also be concerned that our results are sensitive to our selection of control 

variables. While these are theoretically motivated to cover multiple domains that might be 

correlated with both all-cause mortality rates and clean cooking fuel scale-up from 1990–2019 

and the canton-year level, there are some others that could be selected as well. We test the full 

range of combinations of our included control variables as well three more (the fraction of 

pregnant women that received antenatal care, the fraction of children under 5 years that received 

three doses of the pneumococcal conjugate vaccine (introduced in 2010), and a composite index 

of household sanitation practices (source of household water, trash disposal practices, toilet type, 

and presence of a private household shower). In total, there were 2,054 combinations. Per 10 

percentage point increase in the fraction of households primarily cooking with a clean burning 

cooking fuel, we observed a decline in all-cause mortality rate of an average of -5.4% (the 

median was -4.9% (IQR, -2.7% to -7.6%)) across all combinations of controls. 

 

Benchmarking estimates with the Global Burden of Disease 

We benchmark our two approaches using estimates from the Global Burden of Disease (GBD). 

The GBD estimates mortality from household air pollution by collecting data on exposure, health 



9 

endpoints, and population demographics and applying these country-level statistics to modeled 

concentration-response functions over time. GBD models indicate that 27,000 more deaths 

would have occurred had household air pollution levels stayed fixed from 1990–2019, i.e., 30 

years of 1990 household air pollution mortality estimates exceed the ‘observed’ household air 

pollution related mortality estimates by 27,000 deaths. Our first approach based on vital statistics 

yields an estimate of 34,500 excess deaths; our second model-based approach estimates 39,000 

excess deaths. 
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India case study 

The central reference provided in the main text is to India’s energy budget for 2023-2024. In 

conjunction with budgets since 2016-2017, it is clear that investments in PMUY and subsidies 

have declined precipitously (see collated budget data). On August 29, 2023, the Government of 

India announced a cut to domestic LPG cylinder refill prices of roughly 200 INR, in response 

to rising inflation and high international petroleum prices; this move also comes amid ramp up 

for 2024 national elections in India. This brings the total subsidy rate for PMUY-eligible 

households to 400 INR per cylinder; other consumers receive 200 INR per cylinder. Up-to-date 

LPG cylinder refill prices can typically be found at https://www.goodreturns.in/lpg-price.html.  

Central to our estimates of the health-related impacts of cooking gas subsidies in India 

is the logic that if the LPG cylinder refill prices increase, then LPG cylinder refill purchasing 

(and thereby consumption) decreases. When LPG consumption decreases, biomass combustion 

increases. When biomass combustion increases, personal PM2.5 exposures increase, health 

risks increase, and at the population level public health is damaged. Similarly, given that 

biomass emits more greenhouse gases than LPG per unit energy delivered, CO2e emissions 

increase. Similar logic applies to the reverse, which we model directly: lower prices lead to 

more LPG consumption and more biomass displacement. Here, we outline specific inputs for 

our modeling and our approach. 

 

LPG prices 

In 2019, LPG cylinder refills cost 750 INR, subsidized to 550 INR for PMUY beneficiaries. As 

of September 2023, LPG cylinder refills cost 900 INR, subsidized to 700 INR for PMUY 

beneficiaries. However, absent the recent price cut, costs would be at 1100 INR, subsidized to 

900 INR for PMUY beneficiaries. Previously, budgets indicated that there would be minimal 

https://scroll.in/article/1043498/modis-lpg-subsidy-programme-is-not-as-big-a-success-as-the-finance-minister-suggests
https://www.goodreturns.in/lpg-price.html
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support for the LPG subsidy, indicating that it would be plausible that PMUY beneficiaries 

would have to pay 1100 INR per refill. As such, we model three scenarios – 1100 INR, 900 

INR, and 700 INR -- and compare them to 1100 INR costs.  

 

LPG price elasticity 

To estimate the extent to which LPG consumption declines with increases in refill prices, we 

draw on recent experimental work in Tamil Nadu, India among PMUY beneficiaries (10). 

Briefly, households recruited into the study were randomized to receive differing levels of 

subsidies for LPG cylinder refills and their refill and LPG consumption were tracked over time. 

Results from that study indicate strong price sensitivity, which is supported by rich 

observational evidence from both India and elsewhere globally. We estimate price sensitivities 

using results presented in Table 2 of that study, which show the mass of LPG consumed during 

the intervention period in kilograms across the control group and various subsidy levels ($1.70, 

$3.40, $5.10). Using a baseline control cost of about $7.95 per refill, we estimate price 

elasticity among PMUY beneficiaries by regressing the log of consumption per month 

(estimated as group averages divided by an intervention period length of seven months) and the 

log of the price. This procedure yields an estimated price elasticity of -0.33. In other words, a 

1% increase in LPG cylinder refill costs results in a decline in LPG consumption of 0.33%.  

 Given that high consuming households also have larger incomes, we infer that they are 

less sensitive to price than low-consuming households—for whom a single LPG cylinder refill 

accounts for a larger fraction of their monthly expenditures. As such, in our preferred 

specification, households that consume fewer than 4 refills per year have an elasticity of -0.33, 

4-9 refills per year have an elasticity of -0.2, 9-12 refills per year have an elasticity of -0.1, and 

those than consume more than 12 refills per year are price inelastic. In Scenario 2, all 
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households have a price elasticity of -0.33. In scenario 3, all households have a price elasticity 

of -0.10. In analyses, we randomly draw elasticity from relatively tight means/SDs for all; each 

elasticity must be a lower step down and never 0 (except for those than consume >12 refills per 

year). When reporting results, we refer to these three scenarios as “Trade-off Scenario 1”, 

“Trade-off Scenario 2”, and “Trade-off Scenario 3.” LPG price elasticities are referred to as 

Elasticity 1, 2, or 3 (in our main model they are -0.33, -0.2, and -0.1, respectively). Random 

draws are specified as follows (R code; rnormTrunc comes from the EnvStats package): 

 

elasticity1 = rnorm(1, .33, .025) 

elasticity2 = rnormTrunc(1, .2, .025, 0.1, elasticity1) 

elasticity3 = rnormTrunc(1, .10, .0025, 0.01, elasticity2) 

 

LPG consumption 

LPG consumption is derived from energy access survey data collected in 14,850 urban and 

rural households across 152 districts in India’s 21 most populous states in 2019 (11). A 

stratified multistage probability sampling design was implemented to achieve nationally 

representative data when accounting for household level survey weights. All households were 

asked if they had an LPG stove. If so, they were asked if they obtained their stove via PMUY. 

Households that had an LPG stove were also asked how many 14.2 kg LPG cylinder refills 

they purchased in the previous year. As such, we can estimate the distribution of LPG 

consumption in kg per year among PMUY beneficiaries.  

We compute LPG consumption in a few steps. First, we (1) generate a 2019 density plot; 

(2) extract values at every 1kg between 1-200 kg/year; and (3) scale densities to sum to 1 so that 

every value at a 1kg increment can be considered as a % of population. Next, we estimate our 
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‘baseline LPG consumption’ by, for each 1kg/year, multiplying the % price change (relative to 

550 INR) by the price elasticity to get declines in LPG consumption. In this ‘baseline’ scenario, 

LPG cylinder refill prices are 1100 INR.  

To estimate the benefits of the LPG subsidy, we then re-model LPG consumption as a 

function of anticipated LPG cylinder refill price declines (and the price elasticities) relative to 

1100 INR. For each of these scenarios (where prices are 550 INR, 700 INR, and 900 INR), we 

subtract kg declines from the estimated consumption in the 2023 kg/year distributions.  

 

PM2.5 exposures 

There are no recent, nationally representative Indian personal air pollution exposure 

measurements for households that use exclusively polluting cooking fuels, that mix polluting 

and clean-burning fuels, and that use exclusively clean-burning fuels. However, a recent and 

extensive set of measurements in Tamil Nadu, India – of pregnant women, children, and other 

adult women in the same households – provides evidence of the effectiveness of LPG in 

reducing exposures when used consistently. In refs. (12, 13) biomass using households had 

mean PM2.5 exposures of 100-120 µg/m3, while LPG using households had median exposures 

ranging between 37-39 µg/m3. We note that the exposures observed in Tamil Nadu are lower 

than the expected range for biomass using households across India, but nonetheless utilize 

these estimates as they result in conservative overall modeled averted mortality estimates. 

We develop three scenarios to relate LPG consumption to average PM2.5 exposures. For 

each of these models we develop a simple formula with parameters that we randomly draw from 

in each bootstrapped run; the LPG to PM2.5 exposure relationship varies slightly across all 
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runs. In each run, we model all three LPG-PM2.5 relationships fully. The central responses 

include:  

(a) Our preferred, sinusoidal response where there is little movement in exposure until 

about two to three refills per year, then a steep decline until about eight or nine, at which point 

the response levels off.  

(b) A sinusoidal response that can be considered to be somewhat more pessimistic about 

how much LPG consumption results in declines in exposure. In other words, more LPG 

consumption is needed to effectively reduce PM2.5 exposures.  

(c) A linear response from the maximum exposure (1 kg) to the minimum (200 kg). 

In each bootstrap we run all three scenarios and perturb their parameters somewhat 

(slightly higher/lower max/min, earlier/later, steeper/shallower declines).  Specific R code to do 

so is shown below: 

 

min1 = rnorm(1, 25, 5) 

max1 = rnorm(1, 100, 5) 

decline1 = rnorm(1, 70, 2.5) 

exp1 = rnorm(1, 4, .05) 

exp2 = rnorm(1, 8, .1) 

 

x=0:200 

PM25_a=min1 + (max1-min1) / (1 + (x/decline1)^exp1) 

PM25_b=min1 + (max1-min1) / (1 + (x/max1)^exp1) 

PM25_c=max1 - ((max1 - min1) / 200)*x 
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Other model inputs and parameters 
 

We use predicted data on the size of India’s population and crude mortality rate yearly from 

2023–2030. These data are derived from the United Nations World Population Prospects 2022 

(available here). We note that the UN WPP indicates that India’s crude mortality rate will 

decline from 9.1 per 1000 in 2022 to 6.6 per 1000 in 2023. If the crude mortality rate does not 

drop to this extent, our results may underestimate mortality damages due to higher-than-

expected baseline mortality rates, though ex ante it is difficult to know how this may alter the 

effect of LPG subsidies on the margin. 

Our choice of VSL (820,000 USD) comes from ref.13  

Given that we are projecting future benefits, it is useful to apply a social discount rate. 

According to ref.(14) based on growth rates, a discount rate of 9% is appropriate for India in 

global health analyses. 

Our choice of time horizon (2023–2030) is aligned with the Sustainable Development 

Goals ‘deadline’ of 2030, though, of course, is somewhat arbitrary. We refrain from predicting 

beyond 2030 to avoid even larger uncertainties in fuel markets and other policies and political 

environments. 

 

Mortality modeling 

To estimate mortality damages, we estimate the number of people at each 1 kg/year increment, 

which is directly mapped to personal PM2.5 exposure, as outlined above. For a given level of 

PM2.5 exposure, we use the GEMM to identify the mortality hazard ratio for that kg/year 

population group. Applying this hazard ratio to the national crude mortality rate, we then 

estimate excess mortality relative to ‘theoretical minimum’ 2.4 ug/m3. We then sum yearly 

https://population.un.org/wpp/Graphs/DemographicProfiles/Line/218
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excess mortality due to PM2.5 exposure within a year and estimate differences across scenarios 

within a year. We then apply VSLs (preferred, high, low), apply the social discount factor, and 

summarize across various model parameters: price, price sensitivities, and LPG consumption to 

PM2.5 exposure mapping.   

 
Kenya case study 

Our approach to modeling health and climate benefits changes in VAT mirrors that of the India 

analysis.  

Data sources 

LPG consumption 

Recent estimates of LPG ownership and use are derived using two data sources. First, the use of 

LPG as a primary cooking fuel comes from the Demographic Health Survey conducted in 2019, 

which is nationally-representative. One limitation of this survey is that we lack robust data on 

the use of secondary cooking fuels (either LPG or biomass). We complement these DHS data 

with data from Shupler et al. (2021)(15) who conducted 1840 household energy use surveys in 

Eldoret, Kenya. More specifically, we use data from 757 randomly-sampled households in 

Eldoret. These data indicate that among LPG users, 4% of households are exclusive LPG users, 

37% are primary LPG / secondary biomass, and 59% are primary biomass / secondary LPG. In 

total, we estimate that 31.2% of households in Kenya use LPG in some capacity.  

Shupler et al. (2021) also report kilograms of LPG consumed per capita per year across 

the different LPG use types. We simulate normal distributions of LPG kg/capita/year across the 

different household samples to generate hypothetical populations to recover the ‘raw’ data from 



17 

this study. By combining these distributions with data on the number of households in Kenya, 

we can recover distributions of LPG consumption (kg/capita/year) for all Kenyan households.  

 

LPG prices 

We model three central scenarios: no VAT, VAT of 8%, and VAT of 16% (reference). We 

estimate percent change based on the removal (or reduction) of the VAT relative to current 

prices. Based on a reference price of $1.73/kg, which internalizes the 16% VAT, the price 

reduction in percentage terms would be 14%. For the 8% VAT scenario, the price reduction is 

7%. This agrees with observational evidence from Shupler et al. (2023) (16). 

 

LPG price elasticity 

To estimate the extent to which LPG consumption declines with increases in refill prices, we 

draw on recent work by Shupler et al. (2023), who observed LPG consumption records among 

a subset of households that use pay-as-you go technologies. Using real-time data on LPG 

prices and consumption before and after the VAT was re-established, they estimate a change in 

LPG consumption with a change in price. Specifically, Shupler et al. (2023) report1 that LPG 

prices increased by 34 Kenyan Shillings (KSh) from 214 to 249 KSh per kilogram, which was 

accompanied by a decline in LPG consumption of 0.55 kg/capita/month (from 0.82 

kg/capita/month). We thus estimate that a price increase of 16% resulted in an LPG 

consumption decline of 67%. Using these percent changes, we recover a price elasticity of 4.1. 

Elsewhere, Shupler and colleagues report that wealthier households (and higher consuming 

 
1 Reported estimates come from personal correspondence from Dr. Matthew Shupler, who clarified that 
the cited preprint was out of date. Dr. Shupler provided these referenced numbers.   
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households) were less likely to alter LPG consumption as a result of the VAT changes (17). We 

model price elasticity differently across consumption groups, where those that are highest 

consumers have the lowest elasticity and vice-versa. We again draw randomly from a 

distribution in each bootstrap run. R code is as follows: 

 

elastic3 = 4.101045/10 # >30 kg/capita/yr 

elastic2 = 4.101045# 15-30 kg/capita/yr 

elastic1 = 4.101045*1.1 # <15 kg/capita/yr 

 

elasticity1 = rnorm(1, elastic 1, .025) 

elasticity2 = rnormTrunc(1, elastic2, .5, 0.1, elasticity1) 

elasticity3 = rnormTrunc(1, elastic3, .0025, 0.01, elasticity2) 
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PM2.5 exposures 

Recent, nationally representative personal air pollution exposure measurements for households 

that use exclusively polluting cooking fuels, that mix polluting and clean-burning fuels, and 

that use exclusively clean-burning fuels in Kenya are not available. Instead, we draw on a set of 

other studies to establish baselines for these categories.  

  Drawing on the PURE cohort study, Shupler et al. (2020)(18) establish average PM2.5 

exposures (medians and 25th-75th percentiles) for households in Eastern Sub-Saharan Africa as 

follows. They estimate relatively high levels of exposure (in µgm-3): among gas/electric users, 

median female, male, and child exposures (25th, 75th percentiles) are 102 (34, 314), 73 (24, 

226), and 89 (30, 273), respectively, indicating that clean fuel uses in these categories may not 

be exclusively using these fuels. For wood users, median female, male, and child exposures 

(25th, 75th percentiles) are 388 (115, 1122), 279 (83, 808), and 337 (100, 976), respectively. 

  Elsewhere, a study in Kenya focused on predicting personal exposures (Johnson et al. 

(2021)(19)) reports lower estimated predicted and measured exposures among LPG users and 

wood users (in µg/m3): median (25th, 75th percentile) exposures of 29 (27-46); for wood users, 

they measured 182 (104, 292). 

  Using these inputs, we assign average PM2.5 exposure for exclusive LPG use to be 

roughly 35 µgm-3. Average PM2.5 exposure for exclusive biomass use is 250 µgm-3. Both of 

these estimates are perhaps optimistic and ultimately may mean we underestimate impacts. If 

we halve the exclusive biomass value in our models to 125 ug/m3, modeled mortality impacts 

are attenuated by 10-15%. 

As with the India model, we develop three scenarios to relate LPG consumption to 

average PM2.5 exposures. For each of these models we develop a simple formula with 



20 

parameters that we randomly draw from in each bootstrapped run, so the LPG to PM2.5 

exposure relationship varies slightly across all runs. In each run, we model all three LPG-PM2.5 

relationships fully. The central responses include:  

(a) Our preferred, sinusoidal response.  

(b) A somewhat more pessimistic sinusoidal response.  

(c) A linear response from the maximum exposure (1 kg) to the minimum (55 kg). 

In each bootstrap we run all three scenarios and perturb their parameters somewhat 

(slightly higher/lower max/min, earlier/later, steeper/shallower declines).  Specific R code to do 

so is shown below: 

 

min1 = rnorm(1, 35, 5) 
max1 = rnorm(1, 250, 25) 
decline1 = rnorm(1, 18, 2.5) 
decline2 = rnorm(1, 13, 2.5) 
exp1 = rnorm(1, 3, .05) 
exp2 = rnorm(1, 5, .1) 
 
x=1:55 
PM25_1=min1 + (max1-min1) / (1 + (x/decline1)^exp1) 
PM25_2=min1 + (max1-min1) / (1 + (x/decline2)^exp1) 
PM25_3=max1 - ((max1 - min1) / max(x))*x 
 
kg_lpg_pm25 <- tibble( 
  kg_lpg = 1:55, 
  PM25_1 = PM25_1, 
  PM25_2 = PM25_2, 
  PM25_3 = PM25_3 
) 
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Other model inputs and parameters 

We use predicted data on the size of Kenya’s population and crude mortality rate yearly from 

2023–2030. These data are derived from the United Nations World Population Prospects 2022 

(available here). 

Our choice of VSL (230,000 USD) comes from ref (20).  

We apply a social discount rate; according to Haacker et al. (2019)(14) a discount rate 

of 5% is appropriate for low- and middle-income countries in global health analyses. 

 

Mortality modeling 

As in the India model, to estimate mortality damages, we estimate the number of people at each 

1 kg/capita/year increment, which is directly mapped to personal PM2.5 exposure, as outlined 

above. For a given level of PM2.5 exposure, we use the GEMM to identify the mortality hazard 

ratio for that kg/capita/year increment population group. Applying this hazard ratio to the 

national crude mortality rate, we then estimate excess mortality relative to the ‘theoretical 

minimum’ 2.4 µgm-3. We then sum yearly excess mortality due to PM2.5 exposure within a year 

and estimate differences across scenarios within a year. We then apply VSLs (preferred, high, 

low), apply the social discount rate, and summarize across various model parameters: price 

change, price elasticities, and LPG consumption to PM2.5 exposure mapping.   

 

Estimating greenhouse gas emissions differences in all three case studies 

To estimate the greenhouse gas emissions differences across scenarios we need to estimate total 

energy consumption from each fuel and then translate these combustion estimates to emissions. 

To do so, we follow common, simple assumptions about daily energy consumption, fuel-

https://population.un.org/wpp/Graphs/DemographicProfiles/Line/218
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specific combustion emissions, and the fraction of biomass that is renewably harvested (fNRB) 

(and thus does not contribute to net emissions). Broadly we follow a reduced form of the 

approach outlined in Floess et al. (2023) (21). 

   We rely on a set of emissions factors that quantify upstream and at-point-of-combustion 

contributions of cooking fuels to CO2, CH4, and N2O) emissions, which are then converted to 

CO2-equivalent (CO2e) using global warming potentials (1, 27.8, and 273, respectively). We 

have these emissions factors for firewood and LPG in grams CO2e emitted per megajoule (MJ) 

delivered from fuel combustion. For firewood, we defray a portion of related emissions by 

multiplying it by the fNRB. Where feasible, we apply country-specific fNRB values (India = 

27%, Kenya = 61.1%). Ecuador does not have a country-specific fNRB, so we use the low- and 

middle-income country average of 28.8%, which is similar to nearby countries’ values 

(Colombia 29.7%, Peru 26.1%). 

 

Ecuador 

In Ecuador, we model CO2e differences due to the subsidy on the basis of the fraction of the 

population primarily using LPG or biomass in a given year in the observed vs. 20-y delayed 

scenario. To do so, we estimate the total MJ delivered for each fuel in each household, then by 

the population size, and by the emissions factors to obtain CO2e estimates for each year.  

 

Biomass 

We estimate CO2e emissions for biomass in a given year using the following equation 

 CO2ebiomass = γ ∗ EF ∗ ω ∗ 7.3 MJ / person / day ∗ 365 days ∗ fNRB (2) 
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where γ is the total population using biomass and ω is the fraction of cooking that is done using 

biomass.  The emissions factor (EF) is estimated from Floess et al. indicate that per megajoule 

energy delivered from biomass combustion the following are emitted: 3.87g CH4, 0g N2O, and 

633.7g CO2. Given that these are per MJ delivered, they already take into consideration the 

energy efficiency of typical stoves. For LPG, this was 50%; for biomass it was 15%. Using 

global warming potentials (GWPs), we can estimate the equivalent emissions from CH4 and 

N2O to CO2 using standard factors of 28, 273, and 1, respectively. We estimate that per MJ 

delivered biomass combustion is associated with 741g CO2e. This then gets multiplied by the 

fNRB (28.8%), yielding estimates for Ecuador of 290g CO2e per MJ biomass delivered. 

 

LPG  

We estimate CO2e emissions for LPG each year using the following equation: 

 CO2eLPG = γ ∗ EF ∗ ω ∗ 7.3 MJ / person/day ∗ 365 days (3) 

where γ is the total population using LPG and ω is the fraction of cooking that is done using 

LPG. The emissions factor (EF) is estimated from Floess et al. (as with the biomass estimates) 

which indicate that per megajoule energy delivered from LPG combustion the following are 

emitted: 0.234g CH4, 0.0004g N2O, and 166g CO2. Following the above procedure, we 

estimate that, for Ecuador, LPG combustion is associated with 172.6 g CO2e per MJ delivered.  

 

India 

Our modeling procedure for estimating mortality impacts from increases in LPG cylinder refill 

prices can be used to generate estimates of the total kilograms of LPG consumed each year. 

When compared against the baseline scenario, this can be interpreted as changes in LPG kg 
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consumed due to changes in LPG prices. We use these estimates of LPG kg changes to make 

inferences about greenhouse gas emissions. Using the specific heat of LPG of 45 MJ/kg, we 

can convert kg consumed to MJ. Using the above calculations, we can then easily estimate total 

kg CO2e from LPG combustion averted from reduced LPG consumption: 

CO2eLPG = γ ∗ 45 MJ / kg ∗ 0.173 kg CO2e / MJ 

Where γ is additional kg LPG consumed per year.  

While this implies reduced CO2e emissions due to LPG refill price increases, we must 

account for expected increases in traditional biomass combustion. Since reliable, empirical 

evidence of the substitution for LPG and biomass for cooking is in large part unavailable, our 

central approach to estimating concomitant increases in biomass combustion from reduced 

LPG consumption is through energy equivalences. First, we consider the efficiencies of 

traditional Indian chulha stoves (~15%) and LPG stoves (~51%). Dividing these two values 

can help us to estimate a trade-off if household demand for energy delivered were unchanged 

by shifting between biomass and gas (0.29). Thus, we multiply MJ of averted kg LPG by 0.29 

to obtain an estimate of increased biomass combustion in MJ. For each additional MJ firewood 

combustion, we estimate 278.5 g CO2e/MJ firewood delivered. 

 

Kenya 

Our approach for modeling in Kenya is identical to the approach outlined for India, except that 

the fNRB in Kenya is substantially higher, which results in much higher GHG emissions from 

firewood cooking (529.9 g CO2e/MJ delivered).   

 

Monetizing CO2 emissions 
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We rely on Burke et al. (2023)(22) to monetize changes in CO2 emissions in all three case 

studies. Burke et al. (2023) link recent efforts to quantify the harms of CO2 emissions through 

2100 (i.e., the social cost of carbon; SCC), and generate year-specific SCCs from 1980 to 2022. 

These year-specific SCCs are a large advancement over previous efforts to quantify SCCs and 

are a central motivating factor for using these estimates. We use their 2% discount rate scenarios. 

In general, the SCC ranges from $379 / tCO2 in 1980 to $203 / tCO2 in 2020. For future 

damages, we discount the SCC by the social discount factor for each country as mentioned in the 

mortality modeling section. We also model two other SCCs: a low value of $100/tCO2 (from the 

lower bound of the US EPA) and a high value of $1000/tCO2 (from Bilal and Känzig, 2024). 

Year specific dollar values for these alternative SCCs were estimated by using year-specific 

ratios from Burke et al. (2023). For example, Burke et al. (2023) estimate an SCC of $379 / tCO2 

in 1980, which is 1.89 times higher than the SCC $203 / tCO2 in 2020. So, the low value SCC is 

$189 / tCO2 emitted in 1980.  
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SM Fig 1. Sensitivity of estimated benefits from LPG subsidies to alternative monetization 
procedures and bootstrapping. All estimates within a given panel draw on the same 
underlying data and bootstrapped estimates but differ based on the application of different 
monetization approaches. In other words, for the top left panel, we draw on Ecuador’s historical 
transition from firewood to gas (comparing the observed trajectory against one that is slowed 
by 20 years), and generate estimates of averted mortality from 1000 draws of stylized exposure 

Sensitivity of estimates of monetized benefits in Ecuador to higher or lower VSLs and SCCs
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estimates across cooking fuels and the GEMM exposure-response function. The three estimates 
that are shown are based on a low, preferred, and high VSL (as described in the Supplement 
above). Each box-whisker plot is as follows: the box shows the 25th, 50th, and 75th percentile, 
the whiskers extend to 1.5 times the interquartile range, the white dot is the mean, and the 
dashed ends indicate the 2.5th to the 97.5th percentiles of the distributions. The scenarios mirror 
those as described in the main text.  
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SM Fig 2: Ratios of benefits vs. costs of LPG subsidy programs in all three countries under 
various monetization approaches. Based on the results shown in SM Fig 1, we divide total 
estimated benefits (monetized CO2e plus monetized averted mortality) by total estimated costs 
for each scenario, and plot the results. As in SM Fig 1, the box shows the 25th, 50th, and 75th 
percentile, the whiskers extend to 1.5 times the interquartile range, the white dot is the mean, and 
the dashed ends indicate the 2.5th to the 97.5th percentiles of the distributions. 
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